Dueling Contests and Platform's Coordinating Role*

Kostas Stouras

Sanjiv Erat

UC San Diego RADY SCHOOL OF MANAGEMENT

Casey Lichtendahl

Google

* Paper available at <u>www.stouras.com</u> and under review.

Preliminary version accepted at the *Proceedings of the 21st ACM Conference on Economics and Computation (EC), 2020.*

What is an (innovation) contest?

$$(\alpha_1, \alpha_2, \ldots, \alpha_n)$$

Objective:

Maximize the *best* solution

from the crowd

Monopolistic (Standalone) Contest

An innovation contest is a paradigm in which a firm seeks to advance its technology by sourcing ideas from a crowd competing for prizes

What is an (innovation) contest?

Objective:

Maximize the *best* solution

from the crowd

Monopolistic (Standalone) Contest

INNOCENTIVE[®]

Objective:

Maximize the *best* submitted solution

from the crowd

Dueling Contests on a Platform

Reward allocation is a way to differentiate from a competitor

Platforms host multiple concurrent contests

V

Tags: Global Health, Life Sciences, Royal Society of Chemistry, RTP

+ View More

SUDEP INSTITUTE

Whether to promote certain contests

Pathogen Monitoring Challenge - Stage 1

Deadline: Under Eval | Active Solvers: 132

Tags: Business/Entrepreneurship, Chemistry, Computer Science/Information Technology, Engineering/Design, Environment, Global Health, Life Sciences, Public Good, Water, Theoretical

+ View More

+ View More

The SUDEP Institute Challenge: Developing Predictive Biomarkers of SUDEP

Deadline: Oct 10 2020 23:59 EDT | Active Solvers: 334

Tags: Global Health, Life Sciences, Royal Society of Chemistry, RTP

+ View More

Featured contests appear on top

innocentive

View Challenge \rightarrow

View Challenge \rightarrow

Challenges v Solvers v Resources v About Us v

INNOCENTIVE®

What Challenge will you solve today?

Go to the Challenge Center to see all

View Challenge \rightarrow

Regulating firms' budgets

Fixed pricing with contest packages

Receive lots of creative concepts from multiple designers worldwide. You can read more about how it works. We have 4 fixed packages to suit your budget.

Research questions

Solvers: Which contest to participate and exert effort?

Firms: How to design a contest in the presence of competing firms that host their contests in parallel?

INNOCENTIVE

AstraZene

Platform's coordinating role:

Welfare-optimal budgets?

Do "featured contests" maximize welfare?

Matching solvers to contests?

What do we know about this problem?

Monopolistic contest design (in OM)

Kalra and Shi (2001); Terwiesch and Xu (2008); Bimbikis, Ehsani and Mostagir (2017); Ales, Cho and Körpeoğlu (2017); Mihm and Schlapp (2018); Chen, Mihm and Schlapp (2021); Körpeoğlu, Korpeoglu and Hafalir (2022); Moghadas, Nittala and Krishnan (2022); ... ++

Monopolistic contest design with (partial) entry

Erat and Krishnan (2012); Stouras, Hutchison-Krupat and Chao (2021)

Competing auctions and competing contests (in Econ/CS):

McAfee (1993); Peters and Severinov (1997); Virag (2010); Ashlagi, Monderer and Tennenholtz (2011); Azmat and Möller (2009); DiPalantino and Vojnovic (2009)

What do we know about this problem?

Monopolistic contest design (in OM)

Kalra and Shi (2001); Terwiesch and Xu (2008); Bimbikis, Ehsani and Mostagir (2017); Ales, Cho and Körpeoğlu (2017); Mihm and Schlapp (2018); Chen, Mihm and Schlapp (2021); Körpeoğlu, Korpeoglu and Hafalir (2022); Moghadas, Nittala and Krishnan (2022); ... ++

Monopolistic contest design with (partial) entry

Erat and Krishnan (2012); Stouras, Hutchison-Krupat and Chao (2021)

Competing auctions and competing contests (in Econ/CS):

McAfee (1993); Peters and Severinov (1997); Virag (2010); Ashlagi, Monderer and Tennenholtz (2011); Azmat and Möller (2009); DiPalantino and Vojnovic (2009)

Two (known) major impediments:

(1) *infinite regress*: large space of mechanisms, e.g. a mechanism of one may depend on the announced mechanism of the other in general.

(2) *No Analog to the Revelation Principle*, i.e. no tool to abstract away from strategic buyers and sellers' equilibrium depends on buyers' induced equilibrium.

In short: Not much! And it's a hard problem for general cases

4 solvers: Participation?

p: entry probability into firm a

p: entry probability into firm a

Entry probability in firm a strictly increases in α (for any β !)

Exp. Best Noise cond. k entrants (strictly increases in k)

Firm a's objective strictly increases in p (which increases in the 1st prize, α)

Firm a's objective strictly increases in p (which increases in the 1st prize, α)

 $\alpha^*=1$: WTA is a (strictly) dominant strategy for firm a

4 solvers: Participation?

Key take-aways:

(WTA, WTA) is the unique (pure) equilibrium reward allocation!

A single WTA prize maximizes participation in purely noise-driven contests

$$p \in \left(\frac{1}{2}, 1\right)$$

4 solvers

4 solvers

Introducing the **effective noise distribution**:

$$G_{j}(z; p_{j}) := 1 - p_{j} + p_{j} \cdot G(z)$$
Not entering
Entering with
lower noise than z

4 solvers

Introducing the **effective noise distribution**:

$$G_{j}(z; p_{j}) := 1 - p_{j} + p_{j} \cdot G(z)$$
Not entering
Entering with
lower noise than z

Treating a non-entrant as an "entrant" that loses with certainty, we keep the number of entrants *fixed* at *n* irrespective of entry probabilities.

4 solvers

Stochastic orders:

 $G(z) \leq G_j(z; p_j)$ Presence of Firm 2 makes Firm 1 receive a worse distribution of ideas [trivial]

4 solvers

Stochastic orders:

$$G_1(z; p_1) < G^*(z; \frac{1}{2}) < G_2(z; p_2)$$

Submitted ideas under equal budgets

4 solvers

Stochastic orders:

$$G_1(z; p_1) < G^*(z; \frac{1}{2}) < G_2(z; p_2)$$

+

Concavity wrt p1:

$$\pi(p_1) := \pi_{\mathrm{duo},1}(p_1) + \pi_{\mathrm{duo},2}(1-p_1)$$

Aggregate welfare (i.e. total firms' profits and total solvers payoffs)

Contests with homogeneous budgets strictly improve aggregate welfare

Platform: Solver-level coordination Nudging solvers into contests

Are solvers and firms hurt by "featured contests" that nudge solvers?

Nudging solvers into contests

Theorem [Nudging] Nudged entry benefits the firms, the solvers and the platform.

Summary of the Paper

Solver *i*'s output in contest *j* is both driven by effort and randomness to some extent:

$$X_{ij} = Z_{ij} \cdot (e_{ij})^{\vartheta}, \ \vartheta \ge 0$$

Sensitivity
parameter

Summary of the Paper

Solver *i*'s output in contest *j* is both driven by effort and randomness to some extent:

$$X_{ij} = Z_{ij} \cdot (e_{ij})^{\vartheta}, \ \vartheta \ge 0$$

Noise = Known *ex-post* effort, **noise-driven contests**

Summary of the Paper

Solver *i*'s output in contest *j* is both driven by effort and randomness to some extent:

$$X_{ij} = Z_{ij} \cdot (e_{ij})^{\vartheta}, \ \vartheta \ge 0$$

Ability = Known *ex-ante* before entering, **ability-driven contests**

Noise-driven contests

Proposition 1 [Monopoly, i.e. solvers' effort optimization only]

Multiple prizes of equal size are optimal in general (depending on the noise distribution).

Noise-driven contests

Proposition 1 [Monopoly, i.e. solvers' effort optimization only]

Multiple prizes of equal size are optimal in general (depending on the noise distribution).

Proposition 2 [Oligopolistic equilibrium in prize allocations]

Existence of symmetric (firm-level) equilibrium:

Multiple prizes of *equal* size in general (depending on the *noise distribution* and θ but *not on firms' budgets*).

Weakly fewer (and larger) equally-sized prizes compared to monopoly. For all noise distributions, (WTA, WTA, ..., WTA) is the unique equilibrium in

allocations for purely noise-driven contests (i.e. $\theta=0$).

Noise-driven contests

Proposition 1 [Monopoly, i.e. solvers' effort optimization only]

Multiple prizes of *equal* size are optimal in general (depending on the *noise distribution*).

Proposition 2 [Oligopolistic equilibrium in prize allocations]

Existence of symmetric (firm-level) equilibrium:

Multiple prizes of *equal* size in general (depending on the *noise distribution* and θ but *not on firms' budgets*).

Weakly fewer prizes compared to monopoly.

For all noise distributions, (WTA, WTA, ..., WTA) is the unique equilibrium in allocations for purely noise-driven contests (i.e. θ =0).

Corollary

For all noise distributions, WTA is "approximately optimal" for "sufficiently" noise-driven contests (*irrespective of the characteristics of a firm's competitors*).

Allocating a single WTA prize is approximately optimal

Ability-driven contests

 $F(\cdot, \cdot)$ (atomless and commonly known)

Ability-driven contests

Private contest-dependent abilities of solver i: $oldsymbol{a}_i := (a_{i1}, a_{i2}) \in [0,1]^2$

 $F(\cdot, \cdot)$ (atomless and commonly known)

We allow contest abilities to be arbitrarily correlated (per solver)

Q: Which contest would you enter given your skills and your beliefs of skills of others?

Ability-driven contests

Private contest-dependent abilities of solver i: $oldsymbol{a}_i := (a_{i1}, a_{i2}) \in [0,1]^2$

 $F(\cdot, \cdot)$ (atomless and commonly known)

We allow contest abilities to be arbitrarily correlated (per solver)

Q: Which contest would you enter given your skills and your beliefs of skills of others?

A: If budgets are equal: max ability [trivial] Unequal budgets?

Ability in Contest 2

 \mathbf{Z}_2

$$b_1 w_1 (z)^{n-1} = b_2 w_2 (z)^{n-1}$$

Theorem [Solvers' contest selection in a duopoly of ability-driven contests]

An (essentially) unique symmetric equilibrium, where the $\gamma(.)$ boundary is the solution to the functional integro-differential equation

$$\gamma'(z) \cdot \int_0^z f(\gamma(z), t_2) dt_2 = \phi \cdot \int_0^{\gamma(z)} f(t_1, z) dt_1 \qquad \gamma(1) = \phi := \left(\frac{b_2}{b_1}\right)^{\frac{1}{n-1}}$$

No closed-form solution, but structural properties. Changing your contest shifts the entire boundary of types.

Nudging heterog. solvers to heterog. contests

Q: Are solvers and firms hurt by "featured contests" that nudge solvers?

Q: Is nudging heterog. solvers to heterog. contests welfare-optimal?

Theorem

Nudging solvers to contests strictly improves welfare, if solver abilities are sufficiently correlated across contests.

Platform insight: Nudge solvers to contests if contest skills are suff. (positively) dependent. Let solvers self-select contests otherwise.

Implications for contests on platforms*

- Solver-level decision-making:
 - How to allocate resources in the face of "endogenous" outside options?
- Firm-level decision-making:
 - Be aware of your competitors
 - How does your objective position you compared to them?
- Platform-level decision-making:
 - Regulating the firms (budget) and restricting solvers' contest entry through "featured" contests or other nudging mechanisms is welfare optimal
- * Paper available at <u>stouras.com</u> and under review (Minor Revision, Mgmt Sc, Rev Mgmt Area). Preliminary version accepted at the *Proceedings of the 21st ACM Conference on Economics and Computation (EC), 2020.*

Follow-up projects

- *"Momentum Equilibria in Participation on Platforms: Implications for Inequity",* joint with **Sanjiv Erat (UCSD)** and **Jeeva Somasundaram (IE)**
 - Lab experiment to sustain continued participation on a platform and mitigate worker inequity (under review)
- *"Competing screening contests",* joint with Mobin Nejati (UCI Student)
 - How to screen applicants in the face of a competitor who screens as well?
- *"The focused platform"* (with efood.gr)
 - The "optimal" level of diversity a platform should maintain on the buyer and seller side.

Theory and Experiments on **crowdsourcing** and **platform design**, and applications in innovation, services, transportation and retail.