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Abstract

The rise of crowdsourcing marketplaces has allowed firms to involve large communities of exter-
nal users (agents) in their internal processes. The aim of this thesis is the analysis of incentives
and steady state dynamics of on-demand marketplaces in order to align the behavior of self-
interested agents with the objectives of the marketplace.
In Essay 1, we examine the process of crowdsourcing innovation to an online community

of solvers. Through a game-theoretic model, we examine the relationship between a seeker’s
choice of budget allocation across multiple awards and solvers’ incentives for participation and
effort. We characterize completely solvers’ endogenous participation and (unobservable) effort
decisions. The solvers compete only with those solvers who endogenously choose to participate,
who are unknown to them ex ante participation. We show that multiple awards are required
for sufficient solver participation. Finally, we prove that the seeker should optimally allocate
all of her budget to the top participant even if she values multiple solutions from a large but
finite population of solvers.
In Essay 2, we focus on the work-from-home (or virtual) contact center, a new type of the

contact center business model. In a virtual contact center, demand is crowdsourced to a pool
of freelance agents on priority, depending on their skill level and whether they have chosen
to be available. Agent participation is voluntary and their idle time is not compensated. We
study which priority classes partition generates the best incentives for agents of high ability
to participate in order to maximize the profits of the firm. We show that discarding available
information, or deploying a coarse priority scheme with two agent priority classes, maximizes
firm profits and asymptotically maximizes social welfare. This provides a game-theoretical ar-
gument for the extensive use of coarse priorities by large-scale work-from-home service providers
in practice.
In Essay 3, we study the online product support forum, an innovative business model for

service. In a product support forum, the customer service of a firm is partially delegated to an
active online community of users (firm’s customers). We demonstrate that it may be to firm’s
best interest to strategically reduce its service capacity and to increasingly rely on its online
community to serve its impatient customers on-demand. Our results shed light on why similar
firms such as Microsoft and Apple, whose customers experience similar service needs, employ
a fundamentally different strategy on the degree of their engagement in their respective online
product support forums.

Keywords and phrases: on-demand marketplaces, service systems with random servers, server
priorities, contests with uncertain number of competitors, incentives, all-pay auctions theory, in-
novation contests theory, self-confirming equilibrium, work-from-home contact centers, product
support forums
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Introduction

We have a habit in writing articles published in scientific journals to make the work as
finished as possible, to cover up all the tracks, to not worry about the blind alleys or describe
how you had the wrong idea first, and so on. So there isn’t any place to publish, in a dignified
manner, what you actually did in order to get to do the work.

Richard P. Feynman (1918-1988), Nobel Lecture, 1966

Operations of modern marketplaces increasingly rely on incentives to better serve the incoming
demand by the available supply. Precipitated by the lure of compensating for crowdsourc-
ing service on-demand while gaining from differences in skill specializations and availability
preferences, incentives for service expose a marketplace to numerous innate challenges. These
challenges include misaligned objectives between freelance agents and the marketplace, vulner-
ability to provide stable service of high quality due to the fact that the participation decision
of ability-heterogeneous agents is voluntary, and competition of a flexible labor capacity with
the pre-determined staffing level of the marketplace. This dissertation examines the role of dif-
ferent operational levers in the efficient management of these challenges in attaining improved
operational performance for on-demand marketplaces.
The process of sourcing a task to a crowd dates back to ancient times. Due to the account

given by Herodotus (484-410 BC), the Father of History, it is believed that the ancient Babylo-
nians had no doctors at all and instead they were crowdsourcing health care to their community.
As Herodotus describes1:

“They bring out all their sick into the streets, for they have no regular doctors.
People that come along offer the sick man advice, either from what they personally
have found to cure such a complaint, or what they have known someone else to be
cured by. No one is allowed to pass by a sick person without asking him what ails
him.”

We would never know how many lives were saved by crowdsourcing health care in this way.
Another early example of crowdsourcing is attributed to Sir Francis Galton (1907), renowned

anthropologist, biometrician and statistician. In 1906, Sir Galton visited an ox-weight-judging
competition at the West of England Fat Stock and Poultry Exhibition in Plymouth. As
Surowiecki (2005) describes:

“A fat ox having been selected, competitors bought stamped and numbered cards,
for 6d. each, on which to inscribe their respective names, addresses, and estimates

1Herodotus, The Histories, Book I (Clio), 440 BC.
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of what the ox would weigh after it had been slaughtered and “dressed”. Those who
guessed most successfully received a prize.”

This idea that the crowd’s average opinion often outperforms the opinion of any individual is
another famous demonstration of the wisdom of the crowds (Surowiecki, 2005; Lichtendahl Jr
et al., 2013).
With the advent of the Internet and the mass communication, crowdsourcing has found

business applications ranging from generating innovation to connecting freelance agents with
customers in order to provide service on-demand. Modern work-from-home contact centers allow
independent contractors to flexibly choose when to work depending on their preferences and
thriving online communities generate output that provides valuable service to other members of
the community. The popular ride-sharing marketplaces of Uber and Lyft are yet another form
of crowdsourcing service to an on-demand pool of agents competing for work.
To incentivize the agents, a marketplace monitors the output of the agents and shares with

them their relative performance compared to their peers. In addition, the best performers are
rewarded in the form of monetary or non-monetary benefits.
Due to their similarity with sports competitions, patent races or rent-seeking competitions

where contestants are competing for some rewards, settings in which agents compete for inno-
vation or service are naturally termed contests. In fact, websites that elicit innovation from the
crowd such as InnoCentive.com and 99designs.com label them as such. As a concrete example,
consider the case of InnoCentive.com, in which a firm is seeking a solution to a problem by
exposing it to an active online community of crowd-solvers. The solvers submit solutions to the
posted problem and the best of them receive some monetary rewards and accumulate reputation
points that lifts their profile in the social ladder of the community.
Online crowdsourcing contests differ from traditional contests in the following ways. First, the

pool size of potential contestants in online crowdsourcing contests is large, and lies in the order
of ten thousands. For instance, the work-from-home contact center LiveOps outsources demand
to an army of twenty thousand independent contractors who compete for calls (LiveOps, 2014).
Second, whereas a traditional contest organizer can control the number of contestants to enter
the contest, agent participation in online service marketplaces is not guaranteed by the very
nature of the contract between the marketplace and the agent. For example, drivers of the
popular ride-sharing platform Uber are free to determine their own work schedule and cannot
be called Uber employees in legal terms. Third, the agents of a marketplace exhibit a significant
heterogeneity in terms of their skills that make them more (or less) capable to handle a specific
service request. Finally, if and when they decide to work, the agents must be induced to work
hard (i.e. exert effort) to deliver the output needed by the marketplace.
This dissertation focuses on the best way to crowdsource demand to a pool of freelance agents

who create value to the marketplace on-demand, when agent participation is voluntary.

Contests and all-pay auctions

A contest can be represented as an auction in which the higher “bidder” (i.e. the contestant who
exerts the highest effort) receives the most valuable “object” (i.e. the award with the highest
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value) and similarly in case of multiple awards, but all bidders pay their bid to the “auctioneer”
(i.e. the contest organizer). A formal connection between contests and all-pay auctions has been
established by Siegel (2009) and has found applications in crowdsourcing, R&D races and rent
seeking (see Konrad (2009) and Dechenaux et al. (2015) for literature reviews).
We build on the incomplete information, all-pay contest models of Moldovanu and Sela (2001)

and Moldovanu et al. (2007) accounting for the voluntary participation choice of the competing
contestants. In particular, Moldovanu and Sela (2001) consider a contest in which agents’
participation is guaranteed and ability-heterogeneous contestants are competing by bidding
costly effort. Moldovanu and Sela (2001) show that a resource-constrained contest organizer
should optimally allocate its entire budget to the highest effort agent in order to maximize the
expected total effort of the agents. This is often referred to as the winner-takes-all (WTA)
allocation. In a similar model, Moldovanu et al. (2007) find that when agents are instead
competing for status, the most hierarchical formation maximizes the total expected effort, when
agent participation is exogenously fixed and the ability distribution is sufficiently convex.
Modeling sales agents competing for sales in a variety of demand territories, Kalra and Shi

(2001) study the optimal sales contest. Kalra and Shi (2001) consider ability-homogeneous
agents who exert sales effort and the amount of sales they generate is affected by random
demand shocks. Similar to Moldovanu and Sela (2001) the authors find that WTA is optimal,
i.e. allocating the entire budget to the agent with the highest sales maximizes the total expected
sales generated.
Terwiesch and Xu (2008) and Körpeoğlu and Cho (2017) study innovation contests with abil-

ity and effort, however, they do so normalizing agent participation cost to zero, leading to a
WTA award scheme. The seemingly innocuous assumption regarding agent participation cost
fails to address agents’ voluntary participation choice, which is central in online crowdsourcing
marketplaces. As a consequence, all agents enter the contest and the innovation contest orga-
nizer does not face a trade-off between how many solvers and of what skill level to encourage
to enter, and how to motivate those solvers that do enter to work hard.
Overall, prior literature that has shown the optimality of the WTA allocation, it has identified

four reasons for the existence of multiple awards in practice: sufficiently convex cost of effort
(Moldovanu and Sela, 2001), sufficiently convex ability distribution (Moldovanu et al., 2007),
risk aversion (Kalra and Shi, 2001), or the need to induce search (Erat and Krishnan, 2012).
We note that all these papers provide also sufficient conditions for the optimality of a WTA
allocation.
Nevertheless, recent empirical findings of Kireyev (2016) suggest that multiple awards exist

in practice while there are no significant indicators of risk aversion among the contestants and
assuming linear or even quadratic costs of effort. Kireyev (2016) attributes his empirical findings
to the existence of information asymmetry between the agents and the contest organizer. In
particular, the author shows that under complete information a winner-takes-all allocation is
optimal, but when there is information asymmetry multiple awards are beneficial.
We complement the literature on contests and we show that the fact that agent participation

is voluntary may drive the prevalence of multiple awards in online crowdsourcing marketplaces.
We propose a novel theoretical framework to model the trade-off between participation and
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effort of the agents. We show that such a trade-off forces the contest organizer to provide
multiple awards.

Applications of contest theory in operations management

We study three modern business models under the lens of operations management (Girotra and
Netessine, 2014) that challenged the traditional way to generate innovation and provide service
for a firm leveraging large communities of external users (von Hippel, 2005, 2016):

1. Crowdsourcing innovation. Traditionally, the innovation process was conducted entirely
in-house. However, the rise of crowdsourcing has allowed firms to increasingly involve
large communities of external users in their internal innovation processes (von Hippel,
2005; Terwiesch and Ulrich, 2009; von Hippel, 2016). This posed new challenges for the
firms to motivate high engagement by the users and incentivize them to work hard, so that
the firm benefits from crowdsourcing innovation to a large heterogeneous pool of outside
users. The effective management of an innovation contest is of significant managerial
value.

2. Work-from-home contact centers. Call centers have been used extensively to provide ser-
vice to customers of an organization (Gans et al., 2003). The advent of the internet
created a plethora of channels that customers choose to interact with the focal firm in-
cluding video call, real-time messaging capabilities, social media and e-mail among others
(Stouras et al., 2014). To cope with this multi-channel transformation of the service land-
scape, modern service providers employ a work-from-home business model of the contact
center as a cost-effective alternative.

3. Online product support forums. Recently, organizations ranging from newly created start-
ups to Fortune 100 corporations such as Microsoft, Apple and PayPal increasingly crowd-
source service to their active online community of experts via an online product support
forum. Such an online community is composed by customers and members of the overall
ecosystem of the respective service provider, so the firms are essentially crowdsourcing
service back to their customers! Online product support forums have the potential to pro-
vide fast and reliable service leveraging the expertise of the community and even resulting
in second-order branding benefits for the focal firm.

This dissertation takes the first step in understanding the incentive design of these marketplaces
proposing a novel theoretical framework to model the voluntary participation choice of the
agents who provide service in all of the above marketplaces. Chapter 1 of the dissertation
studies the Business Model Innovation 1 by building the first innovation contest model in which
agent participation is endogenous. This model generalizes existing contest theory that considers
an exogenously fixed number of participants, whereas it provides a theoretical foundation that
does not contradict with recent empirical findings. While Chapter 1 focuses on crowdsourcing
innovation, Chapter 2 and Chapter 3 are centered around crowdsourcing service. Chapter 2
focuses on the Business Model Innovation 2 and characterizes the optimal way to allocate
demand to participating agents on priority to maximize firm profits. Our characterization
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Figure 1 Thesis overview: Work is carried out in the “household sector” of national
economies, by the users of large online communities who generate output voluntar-
ily.

provides a causal explanation for why work-from-home contact centers prefer to rank their agents
in a few coarse categories by their sales output. Chapter 3 studies the Business Model Innovation
3 and explores the strategic behavior of the users of the online community of a firm which
service is partially delegated to. The third chapter also illustrates the usefulness of modeling
the voluntary participation choice of the users by providing critical strategic recommendations
to firms which employ a product support forum for service.
Figure 1 provides a high level overview of the contribution of this thesis which lies in the

intersection of the Business Model Innovation Paradigm (Girotra and Netessine, 2014) and the
User Innovation Paradigm (von Hippel, 1991, 2017) under the lens of Operations Management.
A brief account of the individual chapters is provided below.

Innovation contests

Innovation contests are competitive settings in which an innovative solution to an existing
problem of an organization is crowdsourced to a pool of external users. A resource-constrained
firm (seeker) decides on the best way to use its available budget by offering a distribution
of rewards to the best performing solutions. Freelance agents (solvers) observe the promised
reward distribution and determine whether or not to participate and how much effort to exert
to enhance their solution, conditional on participation.
Purely effort-driven contests have been studied extensively in Economics (see the literature

reviews of Konrad (2009) and Dechenaux et al. (2015)) and recently have been applied in
Operations Management (Terwiesch and Xu, 2008; Terwiesch and Ulrich, 2009; Ales et al.,
2017; Nittala and Krishnan, 2016). A notable exception is the recent work of Körpeoğlu and
Cho (2017) that corrects mistakes in the equilibrium analysis of ability and effort model of
Terwiesch and Xu (2008). However, both Körpeoğlu and Cho (2017) and Terwiesch and Xu
(2008) fail to address the voluntary participation decision of the agents in an innovation contest
when solving firm’s problem.
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Pre-announced contest characteristics Min Median Mean Max

Number of prizes 1 4 5 50
Total budget of seeker $500 $1,000 $1,450 $10,000
Participating solvers 58 187 193 499
Solver population per contest 58 235 247 623
Participating solvers/ Solver population per contest 37.23% 78.48% 77.53% 100%

Figure 2 Summary of contests’ characteristics of Tongal.com during 2011-2015 as reported
by Kireyev (2016).

In Chapter 1 we propose a novel theoretical framework to analyze the equilibrium behavior of
strategic agents utilizing the powerful notion of self-confirming equilibrium (SCE) of Fudenberg
and Levine (1993a). We note that the SCE is a generalization of Nash Equilibrium and it has
been shown to coincide with the convergence of a learning dynamics process to a steady state
(Fudenberg and Levine, 1993b). We model this steady state of the system at which the agents
make a rational participation and effort decision based on beliefs on the anticipated actions
of their peers. Such beliefs are distributions on the actions of the others conditioned on an
agent’s own actions. In a SCE we require agent’s ex ante beliefs to not contradict with the
observed ex post equilibrium outcomes of the innovation contest. Further, we explicitly model
the number of participating agents as a non-negative random variable. We show that in a SCE
with symmetric strategies the number of participating agents follow a Binomial distribution
with a participation probability that is determined by the endogenous participation choices of
the strategic agents.

Having characterized the equilibrium behavior of the agents, we next demonstrate that multi-
ple awards can be optimal when agent participation is voluntary. Indeed, to motivate sufficiently
high participation and effort, marketplaces that run innovation contests such as Tongal.com of-
ten announce multiple awards as many as 50 awards with a median of four awards (see Table 2
of Kireyev (2016) reproduced in Figure 2, and see also §D.2 on p.102 for data collected from In-
noCentive.com and Kaggle.com). As Kireyev (2016) reported to us by personal communication
solver participation in contests in Tongal.com is not guaranteed and the fraction of participants
fluctuates with a median of 78% of the entire population. Our model continues to be valid for
an innovation contest with exogenously guaranteed agent participation, and it simplifies to the
existing works of Moldovanu and Sela (2001) and similar literature in this vein. In addition, our
results do not contradict the empirical findings of Kireyev (2016) and Boudreau et al. (2011),
and the experimental works mentioned in Dechenaux et al. (2015) that show that a variety of
contests in practice use multiple awards (as opposed to a winner-takes-all design).

Chapter 1 further makes a conceptual contribution to the contest literature. It provides new
insights on the way the agents substitute costly effort for their intrinsic ability. In particular,
Chapter 1 shows that there is a group of low ability agents for whom ability and effort are
complements, that is the higher the ability of an agent, the higher effort he exerts in equilibrium.
Interestingly, we show that there is an agent (the “hardest worker”) so that agents of higher
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ability than him substitute effort for their ability to the extent that the most capable agent
exhibits a decrease in his effort exerted. This novel effect is shown in the conservative case of
linear cost of effort and is further exacerbated for a convex cost of effort. We note that agents’
performance, which is a convex combination of ability and effort, is always strictly increasing
in ability in equilibrium.
In Chapter 1 we develop a new theoretical foundation of contest theory to incorporate agents

voluntary participation decision and costly effort choice. Then, we apply this framework to two
novel crowdsourcing service settings.

Work-from-home contact centers

Chapter 2 concerns a work-from-home service marketplace which ranks its pool of freelance
agents in a predetermined number of priority classes based on their sales performance (see
Business Model Innovation 2 above). The agents are paid only for the amount of time they are
utilized and higher sale performers earn weakly more. The objective of the marketplace is to
maximize profits by allocating work to participating agents on-demand. Due to the similarity
with a contest, we term such a setting a service contest and apply the techniques of Chapter 1.

A work-from-home contact center can be conceptualized as a service marketplace in which
independent contractors are competing to serve available demand, and agent participation is
voluntary. In particular, the agents are ranked by ability which is a proxy for the amount
of sales they can generate, and they are free to form their own work schedule by choosing
among available work shifts in advance. What is different compared to a regular contest is that
in a service contest the “rewards” (i.e. available routed demand) promised to the agents are
stochastic. Indeed, the firm does not compensate the agents for their time staying idle in the
system and hence the earnings of the agents depend on the incoming traffic that is only shared
among any participants.
In order to make a rational participation decision, each work-from-home agent faces two kinds

of uncertainties: he is unsure of the number of the agents who will choose to participate, as
well as of his own rank-order among the participants. To model this “strategic uncertainty”, we
follow the techniques of Chapter 1 and assume that the agents form (ex ante) beliefs about the
anticipated participation actions of the others. In a SCE we require the beliefs of the agents to
not contradict the observed outcome. That is, the beliefs are self-confirmed in equilibrium.
We next describe some challenges we initially encountered with modeling this setting and

contrast our contributions with the existing literature in Operations Management.
Concurrently to our work, Gurvich et al. (2015) study the optimal pricing scheme to alleviate

the possible externalities the agents impose to their peers when too few or too many participate
in the system. The model of Gurvich et al. (2015) is similar to ours: there is a population
of N agents and incoming demand λ. At the beginning of the period the agents decide to
participate and cannot exit the system during a sufficiently long period of work (so that a
long-run behavior to have some meaning). Gurvich et al. (2015) further extend their model to
a multi-period setting.
In our setting, we explicitly model the number of participating agents as a non-negative
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random variable N and show that in a SCE with symmetric strategies it follows the Binomial
distribution with a probability parameter being a decision choice of the agents. Gurvich et al.
(2015) approximate the expected amount of time an agent is busy, a notion we refer to as the
expected utilization of the agents, with the ratio of the expected demand over expected number of
agents (or λ

E[N ]). Unfortunately, we show that the approximation λ
E[N ] of Gurvich et al. (2015)

of the actual expected utilization E
[
λ
N

]
cannot be applied to our setting for the following two

reasons. First, using Jensen inequality the latter is greater or equal to the former. Hence, a
condition λ

E[N ] < 1 does not guarantee a stable system. We note that the forthcoming paper of
Cachon et al. (2017) also follows Gurvich et al. (2015) and makes the same approximation.
Second, although one can show that E

[
λ
N

]
indeed converges to λ

E[N ] as N →∞ under some
assumptions, these assumptions do not model the voluntary participation dynamics of agents
in a two-sided marketplace. We summarize sufficient conditions for the latter expressions to
coincide as agent population size grows without bound in the following proposition2.

Proposition 1. Assume that:
(1) First, Poisson demand arrives with rate λ and then N agents participate all at once, at

the beginning of a single period with infinite duration. Once an agent enters the system, he
cannot exit.
(2) N ∼ Binomial (N, p)
(3) All agents participate with the same fixed probability p > 0, which does not depend on N .
(4) There is always one additional agent in the system (inflexible employee).
Then, we have that

lim
N→∞

E

[
λ

N + 1

]
= lim

N→∞

N∑
k=1

λ

k

(
N

p

)
pk (1− p)N−k

= lim
N→∞

λ

E [N ] + p
= lim

N→∞

λ

p (N + 1) = 0
(0.1)

Proof of Proposition 1. The proof follows by Cribari-Neto et al. (2000) and the SLLN.
The applicability of Proposition 1 is very limited for the following reasons. Assumption (1)

models the voluntary participation choice of the agents but fails to account for the voluntary exit
of the agents from the system. Although we show that the Binomial distribution indeed arises
in a symmetric self-confirming equilibrium giving support to assumption (2), the assumption
(3) does not address the intuitive fact that the participation probability should depend on the
population size. In practice, the probability to enter given that ten agents could participate
should be larger than the probability to enter the system when one thousand agents could enter
the system. In fact, we show in Stouras et al. (2016) that agents’ participation probability
decreases at the order of O

(
1
N

)
. What is more, assumption (4) is necessary for (0.1) to hold.

Technically, this implies that the support of the (random) number of participating agents does
not include the zero by assumption. Without assumption (4) we have that E

[
λ
N

∣∣∣ N ≥ 0
]

=
+∞ > λ

E[N|N≥0] = λ
Np for all N ≥ 1. However, the popular ride-sharing marketplaces of Uber

2The author thanks Steve Chick, Rouba Ibrahim, Ioannis Panageas, John Tsitsiklis and Amy Ward for fruitful
discussions on stability.
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Figure 3 (A) A model of an on-demand service platform with exogenously fixed demand.
(B) Our model: There is a single period of work of infinite duration in which first
the agents decide to participate and stay in the system for the entire period, and
then demand is realized.

and Lyft do not have any fixed workforce and operate by sourcing work to freelancers who
self-determine whether to participate or not depending on their own schedule.
In addition, we note that any model with exogenously fixed demand that satisfies the as-

sumption (1) of Proposition 1 is unstable with positive probability (see Figure 3(A) for an
illustration). In particular, there is a strictly positive probability that the participating capac-
ity is insufficient to exceed the average demand. This leads to an unstable system with positive
probability P [N ≤ λ] > 0. In the special case that the random capacity follows a Binomial
distribution (i.e. it satisfies the assumption (2) of Proposition 1) one can use Chernoff bounds
and show that the probability P [N ≤ λ] is “small” and can be controlled by the firm. Thus,
one could focus on an on-demand service platform that is (ex ante) stable with high probabil-
ity. Unfortunately, the fact that there is a positive, albeit tiny, probability having an unstable
system, implies that the expected waiting time that the customers face is infinite3!
We are aware of three ways to overcome the aforementioned challenge of stability. First, one

can consider customer abandonments which is a natural assumption to make. As Baccelli et al.
(1984) shows when there is a positive customer abandonment probability, the system is always
stable. However, customer abandonments make the exact analysis of the steady state intractable
and queueing scholars apply fluid approximations at an appropriate scale of the system. To our
knowledge, only Ibrahim (2015) has succeed in formulating fluid approximations for Binomial
servers so far. We note that Ibrahim (2015) assumes that the agents’ participation probability
is exogenously fixed and does not depend on the size of the population. Unfortunately, as we
show this assumption does not apply to our setting.

Second, one can model the exit decision of the servers and scale the system so that the
incoming rate of arrivals of customers and rate of participating agents are in a steady state. This
is indeed the approach followed by Banerjee et al. (2015) leading to a stable system. However,

3To see that, calculate the expected waiting time by conditioning on the system being stable.
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work-from-home contact centers restrict any agents who choose to work at a predetermined
work shift to stay in the system for the entire work shift. In practice, such a work shift typically
lasts six to eight hours Stouras et al. (2014). In addition, in our setting there are agent priorities
which render the exact analysis intractable following this modeling approach.
Third, one can endogenize the demand arrival process so that it leads to a stable system

in equilibrium (see Figure 3(B) for an illustration). Taylor (2016) first applied this modeling
assumption in two-sided marketplace and studied its optimal dynamic pricing strategy, while
Tang et al. (2016) adopt similar techniques on a ride-sharing platform. We follow Taylor (2016)
but we explicitly model the number of participating agents as a non-negative random variable
and show that in a symmetric SCE it follows the Binomial distribution with a probability
parameter which is an endogenous choice of the agents. We extend Taylor (2016) using expected
utilizations and we analyze the steady state dynamics of a markovian queueing system with
random servers and any number of server priority classes. While Taylor (2016) and Tang et al.
(2016) consider homogeneous agents with heterogeneous participation cost, we model ability-
differentiated agents who share the same fixed cost to work for a give work shift. Our analysis
can be extended to the case where the outside option (i.e. opportunity cost) of the agents is
strictly increasing in their ability such that the ratio ability over opportunity cost per agent is
strictly increasing in ability.
The self-confirming equilibrium theoretical framework of Chapter 1 directly applies to a work-

from-home contact center setting to model the endogenous participation decision of the work-
from-home agents of Chapter 2. Next, we study a similar crowdsourcing system focusing on the
dynamics of agents’ participation decision to provide service.

Online product support forums

The idea behind Chapter 3 leading to the solo-authored work Stouras (2016) came when the
author of this dissertation was teaching the fundamentals of the Core Operations Management
course at the INSEAD MBA Programme in March-April 2016. In particular, the author was
responsible for more than 300 INSEAD MBA Students who were frequently sending emails
related to the course logistics, the cases, the exams, and even shared interesting business model
innovation examples from their practical experience. The author utilized Yammer, an online
social networking platform which can be used internally only by INSEAD members4. The MBA
Students were asked to subscribe to notifications from this group and to regularly visit it for
announcements and useful material related to the OM course. The author cultivated an online
community on Yammer encouraging the Students to post questions and motivating them to
respond to questions posted by their peers. Given that it is almost impossible to handle spikes
in email demands from the large community of 300 MBA Students, this crowdsourced solution
provided remarkably fast and reliable service to the class on-demand and with superior quality.
Essentially, the same business model innovation for service support is currently in use by large
corporations such as Microsoft, Apple, PayPal and Walmart, as well as various start-ups which

4See the Yammer POM 16D group available at:
https://www.yammer.com/thelearningnetwork/#/threads/inGroup?type=in_group&feedId=7492861.

https://www.yammer.com/thelearningnetwork/#/threads/inGroup?type=in_group&feedId=7492861&view=all
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employ an online product support forum instead of a traditional contact center for their service
support.
Chapter 3 concerns a firm which partially delegates customer service to an active online

community of users (see Business Model Innovation 3 above). Impatient askers (i.e. customers)
post easy and hard questions and receive service in the form of answers either by an online
community of users (i.e. other customers), or by the servers of the firm. The available staffing
level in the presence of an online community is a choice of the service provider, whereas user
participation is voluntary and costly, and users benefit from providing service on-demand in the
form of reputation points accumulated over time.
Given a rate that firm’s servers respond to questions as a Stackelberg leader, the users of

the online community follow by choosing their service rate. We explicitly account for the non-
participation option of the servers and the users and we allow the service rate to be zero in this
case. We show that a sufficiently active server can discourage users from participating into the
online product support forum. Interestingly, we show that the users service rate for both easy
and hard questions is unimodal in firm’s service rate. That is, there is an initial range of service
rates of the firm that the service rates of the two competing parties behave as complements
and the users respond faster in response to a firm with a faster service rate. However, we
demonstrate that after a “tipping point” these quantities become substitutes at a different level
for each question type.
Further, we show that despite any available high-cost-high-reward hard questions, the users

mix their responses and often reply to low-cost-low-reward questions. We term such “mixed”
equilibrium behavior as exploration to reflect the fact that the users respond to both types
of questions with positive probability. For a sufficiently active firm the users’ participation
cost of resolving an easy question offsets any potential awards of reputation benefits for easy
questions, and the users cluster their responses only under any high-cost-high-reward hard
questions available. In that case we say that users perform exploitation, i.e. they only respond
to the type of questions with the highest potential. An exploitation equilibrium outcome may be
particularly inefficient when easy questions are swarming the system and outside users choose
to resolve only the spare hard ones.
We characterize firm’s optimal staffing level in managing an online product support forum. We

solve firm’s profit maximization problem as a function of askers’ impatience level. Interestingly,
we find that askers’ value is not always increasing in firm’s service rate. This implies that it
may be to the best interest of the firm to strategically reduce its service rate to boost a faster
response rate from the community. The latter insight offers a game-theoretic explanation for
why companies such as Microsoft and Apple with similar products and large online communities
manage their online product support forums differently. We have collected data from these
respective online communities and we aim to test these hypotheses on empirical grounds.
By providing critical strategic recommendations to firms which employ a product support

forum for service, Chapter 3 elucidates the usefulness of modeling the voluntary participation
choice of the users of the online community. The framework developed in Chapter 3 can also be
applied to other settings in which contestants choose to enter a contest among many contests
that run in parallel and have a different deadline. Chapter 3 also complements Chapter 1 and
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Chapter 2, by dealing with the dynamic (as opposed to one-shot) participation decision of the
agents who co-exist with available staffing level of the focal firm (as opposed to an entirely
crowdsourced workforce). In the subsequent sections we describe the individual chapters in
detail. Note that all the three chapters are self contained and can be read in any order.

Organization of the Thesis

We separate the three Chapters of this Thesis into two Parts: Crowdsourcing Marketplaces and
Service Marketplaces. Chapter 1 of Part I examines a traditional innovation contest setting
accounting for solver voluntary participation decision. Chapter 2 and Chapter 3 of Part II
analyze a model of the work-from-home contact center and the online product support forum,
respectively. All proofs are relegated to the Appendices. In Appendix A we present a case
study of LiveOps, a start-up that motivated the research of Chapter 2. A table of notation
used in Chapter 1 and Chapter 2 is contained in Appendix D and Appendix E respectively.
Appendix C compares two popular contest models and shows that they lead to qualitatively
similar equilibrium actions of the agents. Finally, we conclude with a brief review of our
contributions, directions for future research and implications of this dissertation for practitioners
and the future of work.
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Chapter1
Motivating Participation and Effort in
Innovation Contests1

This Chapter studies innovation contests, a business process through which a firm (seeker)
crowdsources innovation to a large pool of users (solvers). Through a game-theoretic model, we
examine the relationship between a seeker’s choice of budget allocation across multiple awards
and solvers’ incentives for participation and effort. We investigate “contest specialization”, a
structural characteristic of each contest that defines the degree to which solvers can substitute
ability for effort to enhance the performance of their solution. We characterize completely
solvers’ endogenous participation and effort decisions. The solvers compete only those solvers
who choose to participate, who are unknown to them ex ante solvers’ participation decision.
We show that multiple awards are required for sufficient solver participation. Finally, we prove
that the seeker should optimally allocate all of her budget to the top participant even if she
values multiple solutions from a large but finite population of solvers.

Key words: open innovation; crowdsourcing; incentives; endogenous participation; innovation
contests with uncertain number of solvers

1This Chapter is based on joint work with Jeremy Hutchison-Krupat and Raul O. Chao (Stouras et al., 2017).
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18 Chapter 1: Motivating Participation and Effort in Innovation Contests

1.1 Introduction

The rise of open innovation and crowdsourcing has allowed firms to involve large communities
of external users in their innovation process (Terwiesch and Ulrich, 2009). Unfortunately, user
(solver) participation in such innovation contests is not guaranteed. Solvers, who have different
skill or ability levels, may find the cost of participation prohibitive. If and when they decide
to participate in a contest, the solvers must be induced to exert effort that delivers the output
needed by the firm (seeker). To incentivize the solvers, a resource-constrained seeker faces a
trade-off between allocating fewer awards of larger value versus more awards of smaller value.
Most papers in the existing literature focus on incentives for effort alone and they largely find
that a winner-takes-all award scheme is optimal. In contrast, we establish that multiple awards
are needed to balance solver incentives for participation and effort in settings where solver
participation is voluntary.
In practice, crowdsourcing a task to outside solvers comes with two main challenges related

to the incentive design of the award scheme. First, crowdsourcing contests can differ widely in
structure depending on the degree to which ability and effort (together) determine output, an
intrinsic characteristic of each contest we refer to as contest specialization (see Figure 1.1). In
competitive settings with high contest specialization, ability or expertise is the key determinant
of solver performance, such as a scientific contest offered on InnoCentive.com or, at an extreme,
competing with the best nuclear physicists in the world to develop the first atomic bomb, as
it was the case in the Manhattan Project (Lenfle and Loch, 2010). Conversely, solver output
depends mainly on the amount of effort exerted in settings with low contest specialization, such
as choosing the best Chinese interpreter for a business meeting on UpWork.com.
Second, solver participation in a contest cannot be guaranteed because each solver faces a

non-negligible participation cost. For instance, solver participation is voluntary for innovation
contests on InnoCentive.com or at logo design contests found on 99designs.com. At an extreme,
one can also conceptualize a ride-sharing platform as a contest in which independent contractors
can self-select whether or not to work and compete for available demand. This is a primarily
effort-driven contest with low contest specialization, as everyone who is capable of driving and
owns a car can become an Uber driver.
In studying innovation contests, the existing literature largely finds that a winner-takes-all

(WTA) award scheme is optimal. This is due to the fact that they either consider contests in
which effort alone determines performance, or they neglect the strategic participation decision

Figure 1.1 Different structural properties of contests.
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Figure 1.2 Brief contest literature taxonomy.

of solvers and analyze only the case when solvers have zero participation cost. Moldovanu
and Sela (2001) consider a setting where effort (alone) is observable by the seeker and they
show that WTA is optimal when the cost of effort is linear or concave. In contrast, in this
chapter, solver effort is unobservable and the output of each solver is a function of both effort
and (privately known) ability. In addition, the solvers in our setting face a strictly positive
participation cost and a linear cost of effort. Our setting leads to multiple awards rather
than WTA. Kalra and Shi (2001) do consider non-negative participation costs and account for
unobservable effort, but in their model the solvers are homogeneous in terms of ability. In a
recent paper Nittala and Krishnan (2016) study an internal innovation contest and allow the
seeker to face a non-negligible participation cost; we complement this work focusing on solvers’
cost to participate. Because all solvers are homogeneous, either all of them participate or none
of them participate. The result is, once again, a WTA award scheme. Our setting allows for
heterogeneity among solvers due to their intrinsic ability. Depending on the award structure
offered, only a subset of the solver population chooses to participate and exert effort. Terwiesch
and Xu (2008) and Körpeoğlu and Cho (2017) also study contests with ability and effort,
however, they do so normalizing solver participation cost to zero, leading to a WTA award
scheme. The seemingly innocuous assumption regarding participation cost fails to address
solvers’ endogenous participation choice, which is central in large crowdsourcing platforms. As
a consequence, all solvers enter the contest and the seeker does not face a trade-off between how
many solvers and of what skill level to encourage to enter, and how to motivate those solvers
that do enter to work hard. Conversely, we demonstrate how the trade-off between participation
and effort forces the seeker to provide multiple awards.
The purpose of this chapter is to find the incentive structure design needed to balance the

strategic participation and effort choices of the solvers. We provide a theoretical basis for
the prevalence of offering multiple awards in practical settings where solver participation is
voluntary. To do so, we develop a game-theoretic model of incomplete information in which each
solver first chooses whether to participate and then how much effort to exert in the innovation
contest. A solver’s intrinsic ability (e.g. skill or expertise level) and effort together determine
his output. If a solver exerts more effort, he increases the chances that he will receive an award,
but effort is costly and it is more costly for solvers with lower ability. Further, in order to make
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a rational participation decision, each participating solver has to cover a fixed participation cost
to enter the contest. This is a critical component of our model, and one of the key differences
between our work and the existing research in this area.
Our results offer guidelines for innovation contest designers depending on their objectives and

whether the characteristics of the innovation contest require greater incentives for participation
or effort. Specifically, our analysis yields three main results. First, we prove that any monotone
reward allocation induces a (unique) threshold ability participation strategy for the solvers
in which their equilibrium performance is strictly increasing in ability. Interestingly, while
solver equilibrium performance is strictly increasing in ability, solver equilibrium effort exhibits
a non-monotone behavior (i.e. high-skilled solvers substitute ability for effort, whereas effort
complements ability for low-skilled solvers). As a consequence, in contests which require a
sufficiently high degree of specialization, the solvers substitute ability for effort to the extent
that all participating solvers exert zero effort in equilibrium.
Second, we find that the contest designer can mitigate these adverse effects by providing

multiple awards. In particular, we show that the celebrated winner-takes-all result of Moldovanu
and Sela (2001), which maximizes total effort, extends to effort-only contests in which solver
participation is voluntary. In contrast, when the performance of a submitted solution is affected
by a combination of solver ability and effort, the seeker may find it optimal to offer multiple
awards. All of our equilibrium results are distribution-free. In our model we impose a linear
cost of effort and analyze it using structural properties of order statistics theory. The presence
of a convex cost of effort would only strengthen our arguments in favor of offering multiple
awards. As it turns out, offering a single award can be potentially quite damaging; we present
a numerical example in which a winner-takes-all budget allocation performs 20% worse than
the optimal multiple award allocation.
Third, our analysis shows that offering multiple awards is beneficial in a general objective

of optimizing a weighted combination of the total performance of the best candidate solutions,
i.e. when the contest designer is interested in the performance of more than one solution (but
not necessarily all of them). The optimal allocation of multiple awards balances a novel trade-
off to maintain a desirable participation level while at the same time provides incentives for
participating solvers to exert effort. Our previously obtained results remain robust in this
general objective. The optimal award allocation contains no more than an upper bound of
awards, which depends on the structural properties of the contest and the candidate solutions
that the seeker optimizes over.

1.2 An innovation contest model

An innovation contest seeker (“she”) has a fixed budget R and elicits innovation from outside
solvers with population size N . Solver participation is voluntary and solvers face a fixed set-up
cost to participate cp > 0. To establish that solvers’ voluntary participation decision makes
seeker offer multiple awards, we assume that the seeker splits her budget evenly into m equal
rewards according to a subset of allocations termed Multiple-Winners (MW), of which Winner-
Takes-All (WTA) is a special case with m := 1. The jth reward has the value Rj := R

m .
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Figure 1.3 Sequence of events in an innovation contest game.

A MW format captures the key trade-off most seekers face between offering many rewards of
smaller value versus being more selective and distribute fewer rewards of higher value2. To
accommodate solver endogenous participation, we allow the reward structure to be contingent
on the actual number of participants3. That is, given a chosen allocation (Rj)Nj=1 and depending
on the realized number of participating solvers n ∈ {0, 1, . . . , N}, the seeker may not expend
her entire budget, i.e. ∑N

j=1Rj ≤ R.
One of the benefits of crowdsourcing innovation is that outside solvers exhibit a significant

heterogeneity in terms of their expertise. Each solver is privately informed about his own ability
(type) ai. Abilities are drawn independently of each other from a common knowledge distribu-
tion F which is strictly increasing on its support [a0, 1], where 0 < a0 < 1. Knowing his ability
ai, solver i exerts effort ei ≥ 0 and incurs a linear cost c (ai, ei) := ei

ai
. The latter formulation

of solvers’ cost follows Moldovanu and Sela (2001) and implies that solvers exhibit quasi-linear
preferences, as it is standard in the mechanism design literature. From the perspective of solver
i, ai is a constant and our simple linear cost function suggests that solvers of higher ability have
lower marginal cost of effort. As noted by Moldovanu and Sela (2001) the key assumption here
is the separability of solvers’ ability and effort.
The seeker observes the performance of the solutions of the participating solvers (but not their

ability and efforts separately) and ranks them in a relative order according to her subjective
taste which is not known a priori by the solvers. We model the performance (or output level)
of solver i as

xi := γ ai + (1− γ) ei + ε,

where ε is the random shock realization of seeker’s subjective taste of a submitted solution4,

2Although seemingly limiting, the preceding assumption on the reward structure is made only for the easy of
exposition and to focus on the latter key trade-off; we demonstrate the robustness of our results by solving
the general combinatorial problem of the seeker allocating a weakly decreasing reward allocation in §D.4.

3We note that when nobody enters, the seeker keeps the budget. Similarly, when one solver enters, he exerts
zero effort and wins the reward R1with certainty.

4In line with the innovation and R&D literature (Terwiesch and Xu, 2008; Erat and Krishnan, 2012; Mihm and
Schlapp, 2015; Körpeoğlu and Cho, 2017), this implies that the seeker can not fully specify ex ante her precise
evaluation criteria. Since the seeker evaluates submitted solutions in a single round, it is natural to assume
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and γ ∈ [0, 1] is a structural (exogenous) characteristic of each contest we refer to as contest
specialization. The contest specialization captures the degree to which the solvers can substitute
effort for ability to determine the output of their solution. Indeed, in a variety of contests, the
performance of a participating solver is affected to a certain degree by a “fixed effect” due to
his intrinsic ability irrespective of his effort choice. Note that the special cases of γ = 0 and
γ = 0.5 result in the observable effort model of Moldovanu and Sela (2001) and the performance
function of Terwiesch and Xu (2008) with a logarithmic effort transformation, respectively.

In order to make rational participation and effort decisions, a solver faces two kinds of un-
certainties: he is unsure of the number of solvers who will choose to participate, as well as
of his own rank-order among any participants. Following Stouras et al. (2016) we model this
“strategic uncertainty” assuming that a solver forms (ex ante) beliefs about the anticipated par-
ticipation and effort actions of the other solvers, conditioned on his own action. In a symmetric
Bayes-Nash equilibrium (BNE) we require solver beliefs to be symmetric and self-confirming. In
particular, a solver first determines his participation probability by making a conjecture on the
rest (uncertain) number of participants to participate with (ex ante) participation probability
p̃. In a BNE we require p̃ to equal the actual (ex post) participation probability p∗. Upon entry,
solvers simultaneously determine their efforts without observing the number or the types of the
participants. We describe the timing of our static game in Figure 1.3.
The utility of a solver is affected by his individual participation and effort decisions, as well

as by the decisions of the other solvers. The participating solver with the highest performance
among the participants wins the reward R1. The participating solver with the second highest
performance among the participants wins the reward R2, and so on until all rewards are allo-
cated. When nobody enters, the seeker keeps the budget. Similarly, when one solver enters, he
exerts zero effort and wins the reward R1 with certainty. That is, the utility of a participating
solver i is either Rj − ei

ai
− cp if he wins reward Rj , or − ei

ai
− cp if he does not win a reward.

Hence, based on belief p̃ about solvers’ participation probability, solver i participates and com-
petes with any other participating solvers, if and only if, his expected utility u (ai, e∗i ; p̃) from
doing so covers the participation cost cp > 0 (IR constraint), where e∗i = arg maxei≥0 u (ai, ei; p̃)
(IC constraint) and p̃ = p∗ (self-confirming equilibrium (SCE) beliefs condition).

The risk neutral seeker values multiple solutions k ∈ {1, . . . , N} from participating solvers
and her objective is defined as5

max
1≤m≤N

Πk (m; p∗) = E

[
k∑
i=1

wi {x∗i (Ai; m, p∗) is ranked ith out of N} · 1{i participates} (m; p∗)

]
(1.1)

for exogenously specified weights w1 ≥ w2 ≥ . . . ≥ wk > 0, where the expectation operator is
taken over any sources of randomness. We note that the chosen reward mechanism moderated
by seeker’s choice of m affects the functional form of effort exerted in equilibrium, as well as,

that seeker’s taste is a common random shock across solvers (symmetric noise).
5Since the ability type of solver i is private information to him, his equilibrium output is a random variable
x∗i (Ai; m, β∗) for the seeker. We denote any random variables with calligraphic symbols to distinguish
them from any exogenous variables denoted with capital letters. Since the ability distribution F is common
knowledge and based on self-confirming beliefs, The seeker can correctly calculate the distribution of the
participating agents and the expected value of any order-statistics derived from the solvers’ ability A.
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the participation decision of the solvers. This further influences seeker’s objective since only
the participating solvers generate output due to the indicator function in (1.1). We provide a
summary of our notation in §D.1.

1.3 Solvers’ equilibrium

In this section, we analyze the strategic behavior of the solvers in equilibrium focusing on
symmetric pure strategies. We first show that a seeker who offers the same award to any solver
who chooses to participate would either attract all solvers, or none in a symmetric equilibrium.

Lemma 1 (Restrictions on seeker’s allocation). (a) Suppose that the seeker decides to allocate
N equal rewards (i.e. m = N). Then, there exist a unique symmetric equilibrium in which
solvers participate with probability p∗ = min

{
max

{
0, R−cp

(N−1)cp

}
, 1
}
. In pure and symmetric

strategies either all, or none of the N solvers participate and exert zero effort.
(b) Assume that the seeker allocates m rewards (of any size) and set

m := max
{
n ∈ {1, . . . , N} : R

n
≥ cp

}
= max

{
1,
⌈
R

cp

⌉
− 1

}
(Upper bound on awards)

In a symmetric pure equilibrium: (i) If m > m, then no solvers participate. (ii) If m = m, then
all solvers participate and exert zero effort. (iii) If m < m, then N ∼ Binomial (N, p) solvers
participate with the same probability p < 1.

Lemma 1 restricts any weakly monotone allocation of rewards of the seeker. In particular,
splitting the total budget among the entire solver population results in a unique symmetric
equilibrium in which solvers participate with a probability p. In a symmetric equilibrium the
ex ante number of participating solvers is a non-negative random variable that follows the
Binomial (N, p) distribution. That is, we distinguish between the stochastic number of partici-
pating solvers denoted with N , and the number of potential solvers (or solver population size)
N which is a deterministic quantity and common knowledge. In order to avoid corner cases and
focus on interior solutions, we require that the seeker cannot set N awards of positive value, so
that the solvers participate with a probability that is strictly less than one.
In addition, Lemma 1(b) provides an upper bound on the number of rewards to induce a

subset of solver population to participate and exert non-zero effort. Importantly, such an upper
bound on the number of rewards to allocate holds for any weakly monotone allocation of the
budget to participating solvers. We note that this is typically satisfied in large innovation
contests in practice. For instance, consider an innovation tournament at InnoCentive in which
seeker’s satisfies R ≤ 5 cp. Then, as long as the size of solvers’ population satisfies N ≥ 6,
Lemma 1 suggests that the seeker can not allocate more than m = 4 rewards, as by doing so
will result in no participation from the solvers. Further, to induce some solvers to participate
and expend non-zero effort, Lemma 1(b) shows that the seeker should allocate at most three
rewards in this case.
Next, we characterize solvers’ participation and effort strategy conditioned on MW budget

allocations with a number ofm ∈ {1, . . . ,m} rewards pre-announced by the seeker. The analysis
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of the general, weakly monotone allocation is qualitatively similar and is delegated to §D.4. We
denote by FN−m:N−1 (·) and fN−m:N−1 (·) the (N −m)th lowest out of N − 1 order statistics
CDF and PDF of the ability distribution F (·) respectively. We present our results in two
separate theorems by first describing solvers’ endogenous participation strategy and then solvers’
strategic effort decision.

Theorem 1 (Solvers’ participation strategy). Suppose that the seeker has chosen to allocate
her budget R into m rewards, where m ∈ {1, . . . ,m}. Then, there exists a unique amin ∈ [a0, 1]
that solves

R

m
· FN−m:N−1 (amin) = cp (1.2)

such that only N solvers with ability ai ≥ amin participate with ex ante probability p∗ (N) :=
1− F (amin (N)).

As we show in the proof of Theorem 1, for any allocation of the available budget chosen by the
seeker the expected utility of a solver is strictly increasing in his ability. That is, if a solver of a
given ability finds it rational to participate, all solvers of higher ability participate as well. As
a consequence, solvers’ participation strategy is characterized by a threshold amin ∈ [a0, 1] that
defines the “marginal solver” who is indifferent between participating and not paying the cost
to participate. Naturally, the existence of a unique and symmetric BNE implies that the solvers
participate by choosing a probability p∗ = 1 − F (amin). Due to symmetry, the participation
probability of a solver does not depend on his ability. Further, we note that solvers’ participation
probability p∗ depends on seeker’s reward allocation and budget, as well as solver population
size, participation cost and ability distribution. As we show below, these dependencies are
critical in order to understand the effect of solver participation on the nature of competition
among participants.
Next, we analyze solvers’ effort decision conditional on participation. We establish that the

solvers have a unique, symmetric and pure effort strategy that crucially depends on contest
specialization.

Theorem 2 (Solvers’ equilibrium effort). Let amin (m) be the induced ex-ante participation
threshold of the solvers and define γ̂ :=

(
1− 1

amin(m)·R

)+
. Then, for any fixed contest special-

ization γ ∈ (γ̂, 1]: e∗ (a; γ) = 0 for all participating solvers with ability a ∈ [amin (m) , 1].
When γ ∈ [0, γ̂] a solver with ability ai exerts equilibrium effort

e∗ (ai; γ, m) =


γ

1−γ (amin (m)− ai) + R
m ·
∫ ai

amin(m) x · fN−m:N−1 (x) dx > 0, ai ≥ amin (m)

0, ai < amin (m)
(1.3)

and (relative) equilibrium performance

x∗ (ai) = γ amin (m) + (1− γ) R
m
·
∫ ai

amin(m)
x · fN−m:N−1 (x) dx (1.4)

At the core of our conceptual contribution is that participating solvers exert effort to compete
only with the rest of the participants (as opposed to solver total population). Prior literature
that builds on the model of Moldovanu and Sela (2001) analyzed contest settings either by
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specifying an exogenously fixed number of participants or by normalizing solvers’ participation
cost to zero (Körpeoğlu and Cho, 2017). The latter neglects the moderating effect of the solver
voluntary participation choice on solver equilibrium effort decision. In contrast, we explicitly
account for the endogenous participation choice of the solvers. The closed-form expressions of
solver equilibrium effort (eq. 1.3) and performance (eq. 1.4) are rather intuitive and connect the
offered budget allocation with the probability to achieve one of the multiple possible rankings
through the order statistics distribution of ability. In the special case of the WTA contest
design (i.e. m = 1), our equilibrium effort expression (1.3) simplifies to the equilibrium effort
and performance of Proposition 2 of Körpeoğlu and Cho (2017) by a log-transformation of their
ability distribution.
Theorem 2 proves that if the nature of an innovation contest is sufficiently specialized such

that solver performance is mainly driven by solvers’ ability, solvers exert minimal effort. Depend-
ing on seeker’s budget, there exists a contest characterized by a “critical” contest specialization
γ̂ defined in Theorem 2 which suggests an explicit lower bound on seeker’s budget in order to
guarantee non-zero effort by participating solvers. In simple terms, the higher the ability re-
quired for a given task manifested by a higher contest specialization, the larger is the amount of
the budget required to sustain the competition among the solvers. Coupled with the Lemma 1,
we assume that seeker’s budget satisfies the following lower and upper bounds.

Proposition 2 (Budget condition). Solvers participate with probability p∗ ∈ (0, 1), if and only
if, seeker budget satisfies

max
{ 1
a0
, cp

}
< R < N cp, (Budget Condition)

which also guarantees that participating solvers exert strictly positive equilibrium effort.

Proposition 2 derives a necessary and sufficient condition on seeker’s budget for agents to
participate with a non-trivial probability which also ensures that solvers exert strictly positive
effort in equilibrium. The Budget Condition summarizes the following three effects. First, the
budget R should exceed solver participation cost cp, as otherwise no solver finds it rational to
participate in equilibrium.
Second, we require seeker’s budget to be limited (R < N cp), in order to guarantee that only

a subset of the solvers’ entire population can potentially participate. We note that similar
upper bound on budget is imposed in the Corollary 2 of Erat and Krishnan (2012) in a related
setting. Due to Lemma 1(a) we have that solver population participates with zero probability.
How many solvers (and of which ability) the seeker chooses to motivate to participate is then
a non-trivial question. When the Budget Condition is violated, the entire population of N
solvers participate. The latter is not aligned with what is observed in practice in large-scale
crowdsourcing platforms such as Tongal.com (see the recent empirical evidence of Table 2 of
Kireyev, 2016).
Third, a sufficient (but by no means necessary) condition to guarantee that participating

solvers exert strictly positive equilibrium effort is that the marginal cost of effort is sufficiently
low, or that 1

ai
< R, for each agent i who participates. Intuitively, the Budget Condition

ensures that no solver relies entirely to his ability when participating in the contest. That is,
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the “critical” contest specialization γ̂ is one. As we demonstrate in Theorem 15 in §D.4, similar
bounds can be obtained for innovation contests with a general reward structure (rather than
the special case of MW contests).
This structural outcome of our model is consistent with the anecdotal evidence that high

skilled solvers exert minimal effort while they still manage to maintain high outputs. Addi-
tionally, observe that for a given threshold participation ability amin, the first term in solvers’
effort (1.3) is negative with respect to their ability, while the second term is strictly increasing
in ability. The latter implies that solvers’ equilibrium effort is in general non-monotone in their
skill level. Consider the case of some MBA students seeking a consulting interview. Applicants
with more expertise can achieve higher performance and still devote less time to prepare.
In the special case of the WTA contest design (i.e. m = 1), expression (1.3) simplifies to the

expression (17) of Körpeoğlu and Cho (2017) by setting their reward A2 := 0 and applying
a log-transformation in the ability distribution. While Körpeoğlu and Cho (2017) contain a
graphical illustration that is aligned with the spirit of our result, the underlying mechanism of
our settings differ: our performance function is linear in solvers’ effort. Accounting for a suffi-
ciently concave function of the effort (such as the natural logarithm) when ranking the solvers,
in combination with an ability distribution that is strictly log-concave (such as the Gumbel dis-
tribution considered by Terwiesch and Xu (2008) and Körpeoğlu and Cho (2017)) may drive a
non-monotonic effort choice of the solvers with respect to their skill level. Interestingly, we show
that this behavior is sustained even when output is a linear function of effort (see Figure 1.4(C)
for an illustration).
Understanding the behavior of the marginal solver and its dependencies with the exogenous

parameters of the contest are critical in identifying potential underlying moderating mechanisms
of solvers’ strategic choices. The next result provides useful comparative statics insights on
seeker’s choices, on the exogenous characteristics of the contest that are outside the control of
the seeker to a large extent, as well as on the characteristics of the competing solvers.

Corollary 1. (a) Sensitivity to seeker choices: The ability threshold amin is non-monotone in
seeker’s choice of the number of awards m with a unique minimum. In particular, there exists
a unique m∗0 such that amin (m) > amin (m∗0) for all m < m∗0, and amin (m∗0) > amin (m) for all
m > m∗0.
(b) Sensitivity to solver characteristics: The ability threshold amin is weakly increasing in

solvers’ population N and participation cost cp. Further, amin is globally the same for all
solvers.
(c) Sensitivity to contest characteristics: The ability threshold amin does not depend on the

contest specialization γ and is a function of the order statistics distribution of ability in the
population.

Extending the number of awards increases the probability of winning a given award, whereas
the value of each award diminishes. One may think that an increase in the number of awards
would always induce more solvers to participate. However, in Corollary 1(a) we prove that
more awards only attract more participants up to a “tipping point” beyond which a higher
number of awards causes the participation levels to drop. In addition, Corollary 1(b) shows
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Figure 1.4 Suppose that R = $10, cp = $0.1, m = 3 awards, N = 102 agents, and a0 = 0.1.
(A) The mass of participating agents (cf. shaded area) for the Beta (2, 5) and
Beta (22, 10.5) ability distributions. (B) Probability to participate in equilibrium
(p∗) as a function of agent population size (N). We use the Beta (2, 5) ability
distribution and we plot for cp = $0.1 and cp = $0.8. We plot the unimodal
equilibrium effort functions on Panel (C) and the strictly increasing equilibrium
performance functions on Panel (D) for contest specialization γ = 44% and
Beta (2, 5) and Beta (22, 10.5) ability distributions, respectively.

that such a threshold is the same for all solvers and does not depend on their ability realization,
or properties of the contest.

However, for a given award structure chosen by the seeker, the specific characteristics of
the competition do not directly affect solvers’ participation choice (Corollary 1(c)), but are
indirectly present through the subtle dependence of the contest specialization on the lower
bound of awards to set, as discussed in Lemma 1. Competing with a large population of potential
solvers would decrease the participation probability of each solver. Indeed, the ability threshold
of the “marginal solver” can not decrease as the population increases. The reverse intuition
holds for the relationship between the ability of the marginal solver and the participation cost;
the larger the cost to participate, the higher the ability participation threshold, i.e. the lower the
expected number of submitted solutions. Further, the exogenous attributes of a given contest
captured by the value of the contest specialization negatively affect solvers’ choice of effort, as
Theorem 2 suggests.

The dependence of the marginal solver on the characteristics of the ability distribution implied
by Corollary 1(c) is more involved. Our results are distribution-free and hold for any ability
distribution which is strictly increasing on its support. To study the effect of the shape of the
ability distribution, we consider the Beta distribution. It is known that the density Beta (α, β)
is symmetric when α = β; it is unimodal when α > 1 and β > 1 with a positive skew (right-
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tailed) when α < β; and it is unimodal with a negative skew (left-tailed) when α > β. Further,
when α = β = 0.5 the Beta distribution is identical to the standard Uniform distribution.

We summarize three key managerial insights obtained so far in Figure 1.4. First, the mass
of participating solvers depends on the size of the population, the ability distribution and the
reward allocation. Suppose that the seeker awards three equal rewards (i.e. m = 3) and that
high-skilled solvers are rare. This models a contest that attracted a very diverse pool of solvers
from a right-tailed ability distribution. Using simulation we illustrate the mass of participating
solvers by the shaded area of the left-tailed Beta (22, 10.5) density in Figure 1.4(A) and by the
shaded area of the right-tailed Beta (2, 5) density respectively. The marginal participating solver
from the Beta (22, 10.5) density has higher ability, thus the screening effect is more pronounced
for left-tailed distributions.

Second, as the population of potential contestants grows larger, the chance that a solver
wins a reward evaporates. This significantly decreases a solver’s participation probability.
Then, it is intuitive that a higher participation cost decreases his probability to participate
(see Figure 1.4(B) for an illustration).

Third, participating solvers’ equilibrium effort is non-monotone with a single peak. In
Figure 1.4 (C) we plot the equilibrium effort as a function of ability for the right-tailed Beta (2, 5)
and left-tailed Beta (22, 10.5) density respectively. We observe that there is a unique solver we
refer to as the “hardest worker”; the worker who defines the single peak in Figure 1.4(C). Hence,
two regions arise in equilibrium: those solvers with ability lower than the hardest worker and
those above him. In the first region, the ability and effort behave as complements for solvers
with lower ability than the “hardest worker”, and as substitutes otherwise. Qualitatively, the
lower the skewness of the ability distribution, the larger is the region where ability and effort
are substitutes. That is, the peak of the effort is attained at a higher ability as the skewness of
the ability distribution increases. Lastly, we note that the equilibrium performance is strictly
increasing in ability as shown in the proof of Theorem 2. This is also illustrated in the plot
of the equilibrium performance as a function of ability in Figure 1.4(D) for the right-tailed
Beta (2, 5) and left-tailed Beta (22, 10.5) density respectively.

1.4 Seeker’s problem

The results from the previous section emphasized the role of reward allocation on solvers’
strategic participation and effort choices. In this section, we analyze how the seeker should
optimally manage an innovation contest with endogenous participation, given a specific degree
of contest specialization.

To build intuition, we first consider a special case of the seeker’s problem. Specifically, we
investigate how the optimal MW rewards should be determined by the seeker to maximize
the total output of the participating solvers. Subsequently, we examine the optimal reward
structure to maximize a weighted combination of the top performers that participate, as well
as its dependency on the parameters of the contest.
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1.4-1 Maximizing the expected total performance of the participants

In various practical settings the contest seeker derives benefit from the collective output created
by all solvers who self-selected to participate, rather than from the solvers of any special sub-
group of the population. In such settings the seeker wishes to determine the award allocation
that induces all participating solvers of any performance rank-order to generate the maximum
output. Normalizing all weights wi = 1 for all positions i = 1, . . . , N , we derive a closed form
expression that describes the seeker’s objective (1.1) as a function of the number of awards m
chosen by the seeker.

Lemma 2 (Total performance of participants). Assume that wi = 1 for all i = 1, . . . , N . The
total expected performance of all participating solvers in equilibrium is given by

ΠN (m; γ) =

{
N γ amin (m) · (1− F (amin (m))) + (1− γ) R ·E [m, N ; amin (m)] , γ ∈ [0, 1)

N ·E [A |A ≥ amin (m) ] , γ = 1
(1.5)

where E [m, N ; amin (m)] :=
∫ 1
amin(m) x · fm:N−1 (x) dx.

The seeker’s decision on the number of rewards to offer impacts her objective through the
following three interconnected ways. The first, which we refer to as the “effort effect”, reflects
the effect of seeker’s choice of rewards on the expected total effort elicited by the solvers. We note
that the “effort effect” has been a central focus of the contest literature after Moldovanu and Sela
(2001). The second, which we refer to as the “screening effect”, captures the effect of seeker’s
allocation on the support of the total expected effort exerted by participating solvers. The third,
which we refer to as the “participation effect”, shows the effect of seeker’s choice of rewards
on the marginal solver who essentially defines the number and the skills of solvers who choose
to participate. The latter two novel effects we identify are due to an incentive misalignment
between the solvers’ individual preferences and the objectives of the seeker. Overall, the optimal
allocation balances all these three effects.
Our results provide a proof using order statistics that supports the suggestion of Moldovanu

and Sela that their WTA result continues to hold when solvers face a strictly positive partici-
pation cost cp > 0 (see Moldovanu and Sela (2001), pp.550-551). Observe that if the solvers are
ranked purely based on their choice of effort, i.e. γ = 0 then seeker’s objective takes the form:
ΠN (m) = R · E [N −m, N ; amin]. If we set m := 1 and substitute V2 = 0 and V1 = R, then
our closed form expression (1.5) agrees with formula (4) on p.547 of Moldovanu and Sela (2001)
by re-interpreting the quantities involved.

Theorem 3. Assume that solvers’ participation cost satisfies cp > 0.
(a) If the contest specialization is zero (γ = 0), then the WTA allocation is optimal.
(b) For a non-zero contest specialization γ ∈ (0, 1] the optimal allocation contains m∗ awards,

where m∗ ∈ {1, . . . , m∗0} and m∗0 is given by Corollary 1(a). In particular, the WTA allocation
is not always optimal.

Theorem 3 shows that the most informative, finely hierarchical reward allocation is never
desirable for the seeker. In particular, allocating more than m∗0 awards hurts the seeker’s
objective. To see this, recall from Corollary 1(a) that m∗0 is the optimal number of awards to
minimize the induced threshold amin; hence, allocating more than m∗0 is harmful to the seeker’s
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objective as it reduces participation. Additionally, as we show in Theorem 3(a) granting one
award to the top (WTA scheme) maximizes the total expected effort of any participating solvers.
Overall, offering more than m∗0 awards is detrimental for both the participation and the effort
incentives of the solvers, and hence it is never desirable by the seeker.
The beneficial effect of offering multiple awards in order to maximize the total output has

been identified by the previous literature but the rationale behind it is fundamentally different.
That is, once we recognize that not all solvers participate, Theorem 3(b) shows that multiple
awards can be profitable even in the conservative case of linear cost of effort, and irrespective of
the convexity of the distribution of ability. In contrast, Moldovanu and Sela (2001) rely on the
special case where everyone participates and show that when the cost of effort is “sufficiently
convex”, multiple awards are optimal. In a follow-up paper and based on another convexity
argument on the ability distribution, Moldovanu et al. (2007) show that the most hierarchical
reward structure can be optimal, when all solvers participate. We note that the presence of a
non-linear costs of effort in our setting would only strengthen our arguments in favor of multiple
awards.
Recently, Megidish and Sela (2013) argue that when a minimal effort is required in order to

compete, the expected total effort under a WTA is dominated by a “random contest” in which
the entire budget is equally allocated among all the participants. We generalize this intuition
and characterize the optimal budget allocation when solvers are ranked based on a convex
combination of ability and effort. Next, we provide a simple example with a strictly positive
participation cost in which WTA is not optimal, due to the “participation” and “screening”
effects of the strategic solvers.
Example. Consider an innovation contest with a population of N = 102 potential solvers

whose ability follows the Unif ([0.1, 1]) distribution. Due to the fact that an accurate estimate
of the participation cost of the solvers is challenging, assume that the ratio of the seeker’s
budget to solvers’ participation cost is R

cp
= 66.66. Suppose also that the nature of the contest

implies a contest specialization of γ = 30%. As Figure 1.5(A) illustrates, choosing a WTA
budget allocation and ignoring the “participation” and “screening” effects results in a substantial
decrease of at least 19% in seeker’s objective (note that this is a conservative estimate since
we are optimizing over MW allocations; see §D.4 for the solution to the general combinatorial
problem).
In lieu of the above, we investigate how the seeker’s optimal choice of awards depends on the

exogenous parameters of the innovation contest.

Theorem 4 (Comparative statics). (a) A seeker having a larger budget R should (weakly)
increase the optimal number of awards. That is, all else being equal, m∗ (R) is weakly increasing.
(b) A seeker of an innovation contest with higher contest specialization γ should (weakly)

increase the optimal number of awards. That is, all else being equal, m∗ (γ) is weakly increasing.
(c) As solvers’ participation cost cp increases, the seeker should (weakly) decrease the optimal

number of awards. That is, all else being equal, m∗ (cp) is weakly decreasing.
(d) As solvers’ population N increases, the seeker should (weakly) increase the optimal number

of awards. That is, all else being equal, m∗ (N) is weakly increasing.

Claim (a) states that a seeker with a larger budget would optimally announce multiple awards,
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Figure 1.5 Suppose that R = $10, N = 102 agents and a0 = 0.1. For cp = $0.15 and
γ = 30% we plot the optimality gap ratio: ΠN (m∗)−ΠN (m)

ΠN (m∗) · 100% as a function of
awards (m), and solver population size (N) in Panel (A) and (B) respectively.
We plot the total performance of participating solvers as a function of awards for
contest specialization γ = 30% and various participation costs in Panel (C), and
for solver participation cost cp = 0.2 and various contest specializations in Panel
(D).

which shrinks the value of each individual award as the budget is fixed. Intuitively, this increases
the probability of a solver to receive an award, which effectively decreases their participation
cost in the contest. This naturally leads to an increase in participation to the benefit of the
seeker. The opposite effect holds true if the solvers face a higher participation cost. In particular,
an increase in the solvers’ participation cost can be outweighed with a suitable increase in the
resources invested in the contest. Figure 1.5(C) graphically illustrates this result.

Similarly, Claim (b) shows that, all else being equal, the seeker should weakly increase the
optimal number of awards subject to an increase in contest specialization. In lieu of the opti-
mality of the WTA scheme shown in Theorem 3(a) when effort is all that matters in solvers’
rankings (i.e. when γ is in a neighborhood of zero) and due to the continuity of the seeker’s
objective in γ we would expect that few awards, if not WTA, to be optimal. In contrast, for
large values of the contest specialization factor we would expect a large number of awards to be
optimal due to Theorem 4(b). Hence, by continuity it is intuitive that as γ increases, the weight
on the “participation effect” increases while at the same time the weight on the “effort effect”
decreases, which force the optimal number of awards to (weakly) increase. We summarize the
insights in Figure 1.5(D).

Previous literature has demonstrated that an increase in the number of potentially competing
solvers is beneficial to the total expected effort at any optimal reward allocation (Moldovanu
et al., 2007). Due to the “participation-related terms” in the seeker’s objective (1.5) and the
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zero-sum nature of the innovation contest game, it is not clear a priori whether an increase in
the value of an award or the allocation of the budget across more awards would be a better
strategy for the seeker. Claim (d) of Theorem 4 proves that a seeker faced with a larger pool of
potential solvers should optimally prefer to reduce the competition among solvers. To do this,
a seeker should offer the same or less rewards. In addition, this implies that the gap between
the optimal and the WTA allocation increases in the population of the solvers. We illustrate
this result in Figure 1.5(B).

1.4-2 Maximizing a weighted combination of the best k performers that
participate

Whereas the contest specialization defines the solvers’ objective, the seeker’s objective is defined
by how many solutions she ultimately needs. In practice, a seeker is typically interested in the
upper tail of solvers’ outputs as well as in generating multiple high performing submissions,
also known as candidate solutions. Consider a typical innovation contest where the seeker is
interested into a subset of top performing ideas out of which he would reward the top three
(Terwiesch and Ulrich, 2009). Similarly, consider the job market hiring process of an academic
institution that has opened a faculty position. A pool of applicants who self-select and compete
in this contest face a non-negligible participation cost related to their job search. The Hiring
Committee (the “seeker”) wishes to attract a number of highly performing scholars and invite
them for a fly-out (“candidate solutions”), out of whom the best one would be typically offered
the faculty position (the “award”).
As such, we allow the seeker to maximize the best k candidate solutions submitted, for an

exogenously fixed number k ∈ {1, . . . , N − 1}. When k is small (e.g. an individual who wishes
to develop a well-specified logo on 99designs.com), the seeker benefits more from developing a
few “star performers” (e.g. outstanding logo submissions) than from marginal improvements in
all of the submissions in a large pool of solvers. In contrast, a large k is indicative of a contest
designer who does seek to improve many submissions.
Our next result shows that the optimality of the Winner-Takes-All (WTA) allocation is robust

when the seeker optimizes the best or the top k participating candidate solutions.

Theorem 5 (Best kth participating outputs). Fix a number k ∈ {1, . . . , N − 1} of candidate
solutions. The Winner-Takes-All (WTA) allocation maximizes the expected performance of the
top k participating solvers.

Theorem 5 proves that the WTA is optimal when the seeker is interested in the top k par-
ticipating candidate solutions. However, when k = N the WTA may not always be optimal
as Theorem 3 demonstrate. That is, for any value of k ∈ {1, . . . , N} we can summarize the
implications of Theorem 3 and Theorem 5 for the structure of the optimal allocation as follows.
The optimal MW reward allocation has the following structural form:

R

m∗
, . . . ,

R

m∗
,︸ ︷︷ ︸

m∗ positive awards

0, . . . , 0

︸ ︷︷ ︸
up to m∗0 positive awards

, 0, . . . , 0︸ ︷︷ ︸
no awards

(1.6)
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That is, the optimal allocation contains no more than m∗0 awards. As we demonstrate in §D.4,
the optimal general reward allocation exhibits a similar structure and is not necessarily a MW
allocation. In the special case where the seeker is interested in as many candidate solutions as
solvers’ total population (i.e. k := N) the setting would translate to a seeker who optimizes the
total performance of the participating pool and we recover the objective already considered in
§1.4-1. Further, WTA is optimal for all k ≤ N − 1.

1.5 Conclusion

In this chapter, we study how innovation contest organizers can manipulate the number and
size of rewards they offer to steer solver incentives for participation and effort. Our model
extends existing theory and we offer a causal explanation for the prevalence of multiple awards
in many crowdsourcing platforms in practice. For instance, in the ideation contest marketplace
Tongal.com, seekers divide their budget equally among winners, and the number of offered
rewards varies with a median of four, and a maximum of 50 rewards (see Table 2 of Kireyev,
2016). Further, the empirical analysis of Kireyev (2016) does not find evidence of risk-aversion
among solvers which could be a reason to offer more than one reward based on Kalra and
Shi (2001). Instead, Kireyev (2016) suggests the existence of incomplete information, or solver
heterogeneity, as a possible interpretation for offering multiple rewards in Tongal.com. The
latter is in line with our theory. Indeed, multiple awards are needed when solver participation
is voluntary and performance is affected by both ability and effort, even when all parties are
risk-neutral and cost of effort is linear.
On the managerial side, the effective budget allocation in an innovation contest requires a

deeper understanding regarding three factors that confound decision making: the degree of
contest specialization, the competitive nature of the contest and the objective of the manager.
The interplay between a low degree to which solvers substitute ability for effort to enhance the
performance of their solution, and an intense competitive landscape both make the incentive
design problem challenging for the decision maker. However, the former decreases the value of
offering various awards, whereas the latter requires more rewards of smaller size. Further, if the
contest organizer cares about multiple candidate solutions the optimal budget allocation may
be entirely different. The rationale behind these effects is of significant managerial value.
Our study of innovation contests coupled with methods that shed light on the strategic

behavior of the solvers can form the basis for a more effective management of the innovation
process. We view our work as an important step that can help academics and practitioners
develop a better understanding of budget allocation at a strategic level.
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Chapter2
First Ranked First To Serve: Strategic Agents
in a Service Contest1

Motivated by two-sided marketplaces and work-from-home contact centers that crowdsource
demand to a pool of freelance agents, we model a service provider which ranks its agents
in a predetermined number of priority classes based on their sales performance. The agents
endogenously decide whether to participate and provide service on-demand. Agents’ idle time
is not compensated and better performers are utilized more and earn more. We study which
priority structure maximizes profit in a markovian queueing model with random capacity. We
show that a coarse partition with two priority classes is the optimal design of such a “service
contest”. Discarding available information on agents’ relative rankings, or deploying coarser
priority classes, provide better incentives for agents to participate, maximize firm’s profit and
asymptotically maximize welfare. This provides a game theoretic explanation for the extensive
use of coarse priority rankings of freelance agents in work-from-home contact centers.

Key words: strategic servers; server priorities; work-from-home contact centers; service contest;
service operations

1This Chapter is based on joint work with Serguei Netessine and Karan Girotra (Stouras et al., 2016).
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2.1 Introduction

The recent rise of the sharing economy enabled service marketplaces to connect customers
requesting high quality of service on-demand with geographically dispersed independent con-
tractors. Operating similarly to ride-sharing platforms such as Uber or Lyft, work-from-home
contact centers (firm) allow freelancers (agents or servers) to provide service on-demand while
their idle time is not compensated. For example, working remotely at a work shift of his/her
choice, a freelancer is able to handle calls, respond to emails, or comment to social media posts
related to a client firm. Unfortunately, agent participation in such settings is not guaranteed
as the agents, who have different skills (ability) as sales agents or service representatives, may
find the cost to participate prohibitive. If and when a number of agents decide to participate
(i.e. serve demand), the profit-maximizing firm would prefer the agents with the highest ability
to enter, as well as to guarantee sufficient capacity to keep customers’ wait low. In practice,
to alleviate possible conflicts of interest that may arise when incentivizing both participation
and high ability (as opposed to just participation), the firm offers the agents an incentive plan.
Specifically, a work-from-home contact center allocates demand to agents on priority based on a
predetermined number of priority classes to induce the agents to act in the firm’s best interest.
To provide specific context for our setting, consider the case of LiveOps (Stouras et al., 2014),

a work-from-home contact center that employs thousands of work-from-home independent con-
tractors (i.e. operators who can not be called “LiveOps’ employees” in legal terms) through
their virtual marketplace. LiveOps acts as an intermediary between these agents and various
organizations (clients) that outsource contact center services to them. Any incoming service
demand for the client is then sourced to a pool of over 20,000 agents around the world. De-
pending on their individual work preferences, a subset of those agents will choose to work from
home and serve calls for LiveOps’ clients. However, unlike a traditional call center that routes
an incoming call to any available operator chosen at random, LiveOps selects the highest ranked
available agent, thus operating under a service contest business model.

A chosen priority ranking scheme makes a huge difference in work-from-home agents’ earnings,
as they are paid on-demand while their idle time is not compensated. For example, LiveOps
could pay its agents $13 for each hour of actively engaging with customers2, and top performers
may earn four times as much as poor achievers due to differences in utilization. Essentially, a
work-from-home contact center transfers its idle time risk to its agents, who are willing to bear
it in exchange for the flexibility it offers them to choose their own work schedule.
More broadly, many organizations employ the use of priority rankings in the form of leader-

boards as a way to reward their agents and align their incentives with the firm. In the restaurant
industry, waiters at the Massachusetts-based restaurant chain “Not Your Average Joe’s” are
ranked in terms of sales generated and better performers receive higher priority over incoming
demand (Netessine and Yakubovich, 2012). As another example from retail, Percolata.com
with 40 retail chains as clients, tracks sales per shop worker in its network and then ranks them
and provides recommendations to the store manager on the optimal employee-mix to schedule
at a given work shift to maximize profits (O’Connor, 2016). Similarly, online intermediaries

2See https://www.glassdoor.com/Hourly-Pay/LiveOps-Hourly-Pay-E105609.htm.
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of the gig economy such as TaskRabbit, Lyft, Uber and Deliveroo leverage past rankings of
their on-demand agents into their routing algorithms to better serve future demand (O’Connor,
2016).
A crucial mechanism that such service marketplaces employ to meet the needs of their clients

is exactly the incentive design of the service contest. Our research questions are therefore
centered around the following issues:
1. How do strategic agents behave in a service contest? How does allocating demand based

on sales performance ranking impact their voluntary participation choices?
2. How should a work-from-home contact center optimally design a service contest? Specifi-

cally, what is the number and size of different priority classes to form, and how do they depend
on the overall parameters of the service contest? Why do work-from-home contact centers rank
their agents in a few priority classes in practice?
The purpose of this chapter is to study the optimal incentive design induced by server priori-

ties to balance the participation and skill trade-off of the strategic servers. First, examine agents’
equilibrium behavior for a chosen relative ranking scheme by the marketplace under a variant
of the classicalM/M/N model with random capacity and congestion-sensitive demand. We ex-
tend this model accounting for priorities on the agents’ side, and derive closed-form expressions
for an associated performance metric, the expected utilization of each priority class taken over
the random capacity available. We assume that the agents form beliefs on the anticipated par-
ticipation actions of their peers and we show the existence of a unique symmetric self-confirming
equilibrium (SCE; Fudenberg and Levine, 1993a) in which the agents can correctly predict the
actual distribution of participants. Our analytical framework explicitly accounts for the unique
aspects of a service contest such as (i) the endogenous participation choice of the agents whose
sales performance capability is private information to them and is revealed to the firm ex post
their participation decision, (ii) the amount of “contest rewards” (i.e. demand in the form of
their utilization level) allocated to agents depends on the (endogenous) number of the agents
that actually participate, and (iii) participating agents of higher type are weakly higher utilized.
We find that agents’ expected utility (strictly) increases in their sales performance capability
in equilibrium. That is, more capable agents receive larger compensation in equilibrium. This
implies that the way that agents self-select to participate in the service contest is characterized
by a unique threshold that does not depend on the sales performance of each agent, and only
agents that exceed that global threshold would find it rational to participate.
Second, we show that offering a coarse priority classes partition is beneficial for the firm.

One may guess that in order to incentivize agents with heterogeneous ability to participate
and generate the maximum profit for the firm, it may seem particularly unlikely to inject some
coarseness into agents’ priority classes partition. Allocating demand to participating agents in
the most hierarchical way allows for agents with strictly higher expertise serve more demand,
leading to a profit expansion. However, we show that a more refined partition induces fewer
agents to participate compared to a coarse partition, so that any profit gains from more capable
agents can not compensate for the decrease in congestion-sensitive demand due to insufficient
capacity. Surprisingly, we prove that a very coarse, two-priority classes partition generates the
highest profits for the firm. The latter insight offers a causal explanation related to incentives
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alignment for why work-from-home contact centers in practice prefer to rank agents coarsely3.
Also, we provide managerial guidelines on how should a work-from-home contact center adjust
its system of priorities when the service contest parameters change.
Third, we show our results continue under various objectives of the firm. In particular,

we show that two priority classes minimize the expected waiting time of the customers, and
maximize the expected ability of the top performing agents. We also demonstrate that as
the population of the agents grows large in an appropriate limiting regime, the number of
participating agents converges in distribution to a Poisson distribution. Combining these results
we prove that two priority classes asymptotically maximize system welfare.

2.2 Related literature

Our work combines the operations literature on user innovation and contests with recent papers
on on-demand service platforms.
The operations literature has studied competitive settings called contests to drive innovation

from agents who are not members of the firm (von Hippel, 2005). Building on the all-pay
auction model of Moldovanu and Sela (2001), Terwiesch and Xu (2008) and Körpeoğlu and Cho
(2017) show that separating the agents into two categories by offering one reward to the best
performer and no awards to the rest (winner-takes-all, WTA scheme) maximizes the total effort
of the agents, when everyone participates. Instead, the agents of our setting are competing for
demand, are heterogeneous in ability and do not exert effort upon participating, i.e. they are in
a service contest. Our work is also related to the literature on social comparisons with reference
points (Roels and Su, 2013; Baron et al., 2015), since the compensation of an agent depends
on the participation choices of his peers. However, our model does not capture the behavioral
effects of feeling too far or too close from the top or experiencing loss aversion as Roels and Su
(2013) and Baron et al. (2015) do respectively. We solve firm’s problem of maximizing total
profits of any participating agents by accounting for heterogeneity in agents’ sales expertise
while assuming that the population is large so that not everyone can participate. The novelty
of our approach lies in treating the number of participants as a random variable, and hence the
exact value of “rewards” in a service contest is only known ex post agents’ participation in the
form of realized utilizations of each priority class. That is, a work-from-home contact center
re-distributes its total “budget” (i.e. available demand) in real time among the (endogenously)
determined participants.
Further, in order to make a rational participation decision the agents form beliefs over their

anticipated utilization level which we require to not contradict the observed outcomes in equilib-
rium. We use the self-confirming equilibrium notion developed by Fudenberg and Levine (1993a)
that is a weaker form of the Rational Expectations equilibrium and is outcome-equivalent to
Bayesian Nash equilibrium in our setting. See Su and Zhang (2008); Swinney (2014); Cachon
et al. (2017) for applications of this equilibrium notion in supply chain management, inventory
theory and marketplaces, respectively.

3Based on personal communication with LiveOps’ executives, LiveOps offers several number of priority classes
of agents based on their attributes called “pools” (cf. http://goo.gl/HQjrJH for some concrete examples).
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Recently, on-demand service platforms have been modeled via a principal-agent framework in
which the firm does not differentiate among the participating agents. In a multi-period setting,
Gurvich et al. (2015) address capacity management questions with self-scheduling agents with
exogenously fixed service rates, and Ibrahim (2015) uses appropriately scaled fluid limits to
study the asymptotic behavior of such agents under various compensation plans offered by
the platform. Cachon et al. (2017), Taylor (2016) and Tang et al. (2016) study the optimal
dynamic pricing decision of a ride-sharing marketplace with ability-homogeneous agents and
find the optimal surge pricing scheme to motivate sufficient agent participation in the presence
of congestion. Gopalakrishnan et al. (2016) and Zhan and Ward (2015) analyze, respectively,
routing and staffing decisions, and compensation schemes in many-server queuing models where
servers can determine their service rates and servers’ participation is controlled by the firm.
Our work complements these papers in a single-period setting with self-scheduling capacity,
in which the agents self-select to participate and a work-from-home contact center ranks its
ability-heterogeneous agents into priority classes.
Most of the work in the queueing literature studies customer priorities and builds on Kleinrock

(1967) who considers customers who arrive to an unobservable queue and bid to affect their
priority assignment in the queue. While customer types are never pooled in this stream of
research, Afèche and Pavlin (2016) show that coarsening the customer priority classes partition
(i.e. pooling some customer types in a single priority class) optimizes revenue, and Hu and
Benjaafar (2009) find that pooling available resources among different customers based on their
service requirements is beneficial for customers’ expected time in the system. Nazerzadeh and
Randhawa (2015) show the asymptotic optimality of offering two customer priority classes to
maximize revenue in large systems, a coarsening result that was recently extended and shown
to further maximize social welfare (Gurvich et al., 2016). Focusing instead on the server-side
analog, we find that offering two server priority classes maximizes firm’s profit when servers’
types are private information and their participation is voluntary. Notably, Knessl (2004) studies
a storage allocation problem of parking spaces near a restaurant. By analyzing the M/M/∞
queue with m primary servers and infinitely many servers of secondary priority, asymptotic
results are provided by Knessl (2004) based on the earlier methods of Kosten (1937) and Newell
(1984). In this chapter, we examine the steady state dynamics of the stable M/M/N queue
with any number of (server) priority classes and N is a random variable with finite support
representing the number of endogenously determined participating agents in equilibrium.
To the best of our knowledge, this is the first model of a work-from-home contact center which

allocates work to agents on priority depending on their sales capability while agent participation
is voluntary.

2.3 Model development

A work-from-home (virtual) contact center (firm, “she”) serves incoming demand through a
population of N independent contractors (agents or servers, “he”) for a predetermined work
shift (period) in order to maximize profits from sales of a given product. First, the firm decides
on the number and size of priority classes (priority classes partition) to form by partitioning
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Figure 2.1 Sequence of decisions, timing of uncertainty resolution, and an illustration of the
priority classes partition for a population of N = 10 agents split into k = 3
priority classes with N1 = 2, N2 = 5, N3 = 2 agents respectively (Step 1). In this
example, n1 = 1, n2 = 3, n3 = 2 participating agents are realized for each class
(Step 2). Incoming demand λ is shared among the participating agents according
to priority classes formed and FRFtS routing (Step 3).

agents’ population into k categories, where k ∈ {2, . . . , N}. Second, the agents are privately
informed about their sales or service capability (ability) and a subset of agents’ population
decides to work (participate) for the period. Participating agents are ranked by their ability
according to the priority classes partition chosen and they are paid an exogenously fixed wage
when utilized, while their idle time is not compensated. Third, each customer observes his
expected waiting time of service as communicated by the firm, and decides whether or not to
seek service upon experiencing a need for service. Due to its similarity with a “competition
to provide service”, we term our setting a service contest. We refer the reader to the right of
Figure 2.1 for an illustration of the sequence of events and we describe below the steps of our
model in greater detail.
We begin with the demand side. The customers experience a need for service according

to a Poisson process with mean Λ, and are served by a realized number of n ∈ {0, 1, . . . , N}
participating agents at exponentially distributed service times (see §E.1 for a list of the notation
used). Consistent with anecdotal evidence from practice4, work-from-home contact centers are
typically supply-constrained, i.e. for a given mean demand for service Λ the number of potential
agents satisfies N < Λ. Customers are processed on a first-come-first-served fashion, receive
service value V > 0 and incur disutility c > 0 per unit of time waiting in the queue, and demand
is sensitive to congestion. Specifically, upon experiencing a need for service and conditional that

4See https://goo.gl/ScetQI, assessed in February 2017.
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{N = n} agents participate (in Step 2), a customer decides to seek service with probability q
in order to maximize his expected utility of being served Uc (q) := V − c ·W (Λq, n) facing zero
outside opportunity cost, where W (Λq, n) is the expected waiting time in queue of an M/M/n
system. After deciding to seek service, a customer does not abandon the system.
It is known (see e.g. Chapter 3 of Hassin and Haviv 2003) that conditional that n ∈ {1, . . . , N}

agents have participated, the equilibrium demand arrival rate λ (n) = Λ ·q (n) satisfies λ (n) < n

and is the unique solution q∗ < n
Λ to the equation

Uc (q) = V − c ·W (Λq, n) = 0 (2.1)

That is, observing the expected waiting time communicated by the firm based on the number of
agents that choose to participate (in Step 2), delay-sensitive customers seek service (in Step 3)
only at a stable rate (otherwise they experience negative utility). Operating similarly to a ride-
sharing app that terminates service displaying “no drivers available at this point” to potential
riders, a work-from-home provider announces service delays to customers. Conditional that no
agents participate for the period, the customers do not seek service, i.e. λ (0) = λ · q (0) = 0.
Next, we describe the supply side. The agents are heterogeneous in the probability they

generate sales or create service value to the firm (ability) and follow an automated script. We
normalize agents’ service rate to unity reflecting the fact that the service duration is outside
the control of the agents. The ability ai of an agent i ∈ {1, . . . , N} is private information to
him and it is not known by the firm when she decides on the relative ranking scheme to form in
Step 1. Abilities are drawn independently of each other from the interval [0, 1] according to a
continuous distribution F (·) that is common knowledge5 and strictly increasing in its support
with density f (·). For example, some agents may be intrinsically more capable (thus having
a higher a value) than others in resolving a specific technical request or persuading interested
customers to subscribe to an insurance plan, or to buy a product.
In order to make a rational participation decision, agent i faces two kinds of uncertainties: he

is unsure of the number of the agents who will choose to participate, as well as of his own rank-
order among the participants. To model this “strategic uncertainty”, we assume that the agents
form (ex ante) beliefs about the anticipated participation actions of the other agents. Formally,
agent i’s belief β̃i is a probability distribution over the participation actions of the others,
conditioned on his own participation action. In a self-confirming equilibrium (SCE; Fudenberg
and Levine, 1993a) the agents can correctly predict the actual distribution of participating
agents’ actions β∗, that is β̃i = β∗ in a SCE6. We assume symmetric (i.e. β̃i = β̃ for each agent
i) and consistent beliefs (i.e. the belief of each agent i 6= j, k is the same with the agent j’s belief
about k’s actions), while excluding correlated beliefs. Hence, a self-confirming equilibrium in
our setting is outcome equivalent to Nash equilibrium (Theorem 4 in Fudenberg and Levine,
1993a).
Based on a partition N := (N1, . . . , Nk) of agents’ population decided by the firm in Step

5In practice, the firm has past sales data for each agent, as well as rankings on specialized training simulations
for new hires. Such past data allow a work-from-home contact center to empirically estimate the distribution
of sales or service performance across its agents.

6In what follows, we reserve the symbol (̃·) to denote a belief, and denote an equilibrium action by a star (·∗).
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1, the outcome of the service contest is affected by the individual participation choice of each
agent, as well as by the choices of the others. Conditional that n−1 other agents participate let
ρj be the realized utilization of agents in class j. We denote by w the hourly wage of the agents
who are compensated on-demand for providing service7, and by cp > 0 agents participation cost
into the service contest. Then, the utility of agent i is w ρj if he participates and his ability ai is
ranked in priority class j, and cp if he does not participate. In particular, agent i participates,
if and only if, his expected utility from doing so

u
(
ai; β̃

)
=

k∑
j=1

w ρ̂j
(
β̃
)
·P [ai is ranked in priority class j] (2.2)

covers his participation cost cp, where ρ̂j
(
β̃
)

:= EN
[
ρj
(
N ; β̃

)∣∣∣ ai is ranked jth] is the ex-
pected utilization of the agent ranked in priority class j, taken over the vector of participating
agents in each class N := (N1, . . . , Nk) subject to symmetric (ex ante) beliefs β̃ about the par-
ticipating actions of the others. We note that Baron et al. (2015) consider a similar expected
utility involving probabilistic beliefs over the actions of the rest agents to model a consumer’s
utility from consumption and the availability of the product due to the consumption choices of
the other consumers.

We next describe the priority routing scheme we are focusing on. Motivated by what is often
observed in practice in work-from-home call centers (Stouras et al., 2014), demand is allocated to
participating agents based on the chosen partitionN and according to a routing scheme that we
term First-Ranked-First-to-Serve (FRFtS) routing. For any chosen partition, allocating demand
under FRFtS routing induces a vector ρ := (ρ1, . . . , ρk) of realized utilizations for each class
such that ρj ≥ ρj+1 (the lower the index j, the higher the priority and utilization), while the
nj participating agents in class j are allocated demand rate λj , where j = 1, . . . , k. We require
the total demand allocated to match the incoming demand available, i.e. ∑k

j=1 nj · ρj (n) =∑k
j=1 λj (n) = λ for any realization n := (n1, . . . , nk) of the number of participating agents in

each priority class. By its very definition, FRFtS represents a form of efficiency compared to
uniform routing because when several agents are free, better agents would be more utilized.
In addition, when all agents are busy, a single queue is formed (pooled system) and customers
experience the minimum wait (compared to a system with a dedicated queue in front of each
server).

Finally, we describe firm’s decisions made in Step 1 based on self-confirming beliefs on the
anticipated actions of the agents. The firm is risk neutral and obtains an exogenously fixed
revenue Vf when agent i is making a sale and pays him per-service wage w when he is utilized,
as specified by the partition chosen. In Step 1, the probability that agent i is making a sale
(i.e. his ability) is a random variable Ai for the firm. The firm determines the number and size
of priority classes (coarseness level), or equivalently decides on k distinct and non-increasing
values of expected utilizations ρ̂1, . . . , ρ̂k to form in order to maximize her expected total profit

7Note that the hourly wage w is exogenously specified and it is identical for all agents in our model who serve
a given type of product, although in practice it varies by product (Stouras et al., 2014). Here, we focus on a
simplified setting with one product only.
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generated by any participating agents in equilibrium

max
k, (ρ̂j)kj=1

Π = E

[
N∑
i=1

ρi (N ; β∗) · {Vf · Ai − w} · 1{agent i participates}
(
(ρ̂j)kj=1 ; β∗

)]
(2.3)

Note that the expectation operator in (2.3) is taken over any sources of randomness while only
the participating agents generate profits for the firm due to the indicator function 1{·}. We
term as coarse any partition with k ∈ {2, . . . , N − 1} priority classes to distinguish it from the
fine (or the most hierarchical) partition that has k := N priority classes.

This chapter is organized as follows. We characterize work-from-home agents equilibrium
behavior in §2.4. We then solve firm’s problem in §2.5. Our basic model is extended in §2.6 in
several directions. A table of notation used is provided in §E.1. We relegate all proofs and any
technical results on the queueing dynamics of our setting in the Appendix and §E.2 respectively.

2.4 Agents’ equilibrium behavior in a service contest

In this section we analyze the behavior of the agents in a self-confirming equilibrium focusing on
symmetric pure strategies. Our first result, demonstrates that a work-from-home contact center
cannot eliminate its priority classes entirely, i.e. a minimal degree of differentiation among the
heterogeneous agents is required.

Lemma 3 (The value of priorities). Assume that the agents population size is sufficiently large
so that:

N > λ (N) w
cp

(2.4)

If the firm decides to remove any priority classes, no agent has incentive to participate in
equilibrium.

As we demonstrate in the proof of Lemma 3 if all agents are offered the same utilization
regardless of their sales capability, either all agents or no-one participate in a symmetric pure
equilibrium. Driven by the fact that work-from-home contact centers in practice source demand
to a large pool of agents of the order of 20,000 (Stouras et al., 2014; LiveOps, 2014), we impose
a condition that agent population is large compared to the maximum possible demand, the
wage offered and agent participation cost. Alternatively viewed as w <

cpN
λ(N) the condition

(2.4) has also the economic interpretation that the wage paid is limited (or that the agents’
population is large) so that it is not possible for all agents to participate, since they would not
cover their participation cost (see also the Corollary 2 of Erat and Krishnan (2012) where a
similar condition was shown to be sufficient to motivate N agents to participate in an innovation
contest). How much of the agents’ market that the decision-making firm chooses to incentivize
to enter is then a non-trivial question. In what follows, we assume that (2.4) holds.
Lemma 3 implies that in order to guarantee non-zero participation and incentivize agents to

enter the service contest, the firm should form at least two priority classes. Since work-from-
home contact centers have typically a large agent base of the order of thousands, employing
server priorities functions as a “toll” to control the participation incentives of selfish agents.
Indeed, our next result shows that a priority classes partition acts as a screening mechanism
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to filter the participants and prevent agents of sufficiently low ability from entering the service
contest. This provides a game-theoretic reason to the firm for using server priorities, in addition
to rewarding its top performers and punishing any low achievers.

Theorem 6 (Self-confirming equilibrium). Let N = (N1, . . . , Nk) denote the priority classes
partition chosen by the firm in Step 1. There exist a unique p∗ ∈ [0, 1] and amin ∈ [0, 1] that
solve ∑N

j=1w (ρ̂j − ρ̂j+1) · FN−j:N−1 (amin (p∗)) = cp

p∗ = 1− F (amin (p∗))

}
(2.5)

such that only agents with ability a ≥ amin participate according to beliefs p∗ on the fraction of
participants, and we set ρ̂N+1 := 0.

Alternatively viewed, the expression (2.5) is the participation (IR) constraint of the agents.
Replacing the expected utilization of a given priority class with the expected (over the number
of participants) value of awards of a contest gives an intuitive interpretation of the LHS of (2.5)
using the language of contests and tournaments (see Moldovanu and Sela (2001), Terwiesch
and Xu (2008) and Ales et al. (2017)). The expected compensation of the marginal agent in a
service contest with (up to) k distinct levels of expected utilizations is equal to the expectation
of the differences of expected utilizations across each possible rank he may achieve, subject to
self-confirming beliefs.
Theorem 6 shows that for any priority classes partition determined by the firm that allocates

demand according to FRFtS routing, the agents have a unique participation strategy in a SCE.
Specifically, the agents enter the service contest, if and only if, their ability exceeds an ability
threshold amin ∈ [0, 1] that does not depend on the realization of their privately known ability
type, i.e. amin is global. Following the sequence of events of our model, the agents know their
own ability type when they choose whether to participate in Step 2 based on the announced
priority classes partition in Step 1 (see Figure 2.1). Hence, by forming beliefs that turn out
to be correct in equilibrium, the agents (and the firm) can accurately calculate the common
ability threshold that uniquely characterizes agents’ participation strategy. Theorem 6 is driven
by the (weakly) monotone nature of FRFtS routing of demand to servers depending on their
priority, namely that better ranked agents are weakly higher utilized and receive weakly higher
expected earnings in order to cover their participation cost. Indeed, we show that agents’
expected earnings over their potential rank-order is strictly increasing in ability. That is, once
an agent ranked in a certain position finds it rational to participate, all higher ranked agents
would participate as well. This implies the existence of a unique “marginal agent” with ability
amin who is indifferent between participating and his outside opportunity cost.
Agents’ participation is central in our analysis and we investigate next the behavior of the

distribution of the equilibrium number of participating agents. Due to the binary participation
decision of the agents in symmetric strategies it is intuitive that the equilibrium number of
participants follows the Binomial distribution with parameters the agents’ population of the
agents and their endogenously chosen probability to participate. Motivated by the fact that
work-from-home contact centers employ a large-scale pool of independent contractors, we further
characterize their asymptotic behavior by scaling the nominal arrival rate to Λ ·N and agents’
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Figure 2.2 (A) Convergence to a Poisson distribution. (B) Rate of convergence of the mean
(solid line) and variance (trimmed line) of the participating agents as a function of
agent population to a Poisson mean and variance n∞ = 11.1 respectively (dashed
line).

service rate to N . Note that such a scaling stochastically decreases the realized utilizations of
each priority class.

Theorem 7 (Asymptotic behavior in equilibrium). (a) The number of participating agents in
equilibrium N ∗ follows Binomial (N, p∗) with p∗ = 1 − F (amin). Further, agents’ equilibrium
participation probability p∗ (N) decreases in the size of the pool of agents N .
(b) Set m := max

{
1,
⌈
wΛ
cp

⌉
− 1

}
and scale the nominal arrival rate to Λ · N and agents’

service rate to N . As N → ∞, the number of participating agents converges in distribution to
Poisson (n∞), where n∞ > 0 is constant that does not depend on N and is the unique solution
to the equation

m∑
j=1

wρ̂Poisson
j (n∞) · e−n∞ (n∞)j−1

(j − 1)! = cp, (2.6)

where ρ̂Poisson
j denotes the expected utilization of the jth ranked agent when the number of

participating agents follows Poisson (n∞), for j ≥ 1.

In lieu of Theorem 6, Theorem 7(a) shows that only a number of top ranked agents par-
ticipate in equilibrium, who are distributed according to Binomial (N, 1− F (amin)). Agents’
participation probability pN = 1−F (amin (N)), which further determines the “marginal agent”,
tends to zero as the size of agents’ population grows large. Intuitively, as agents population size
grows without bound, the agents feel that their chances of recovering their participation cost
are minimal due to fierce competition and instead prefer to drop out. What is of interest is the
rate of convergence of agents’ participation probability to zero. Interestingly, as N → ∞ the
expected number of participating agents N · pN approaches an upper bound, a finite positive
number n∞ which is the unique solution to eq.2.6. Our result on strategic servers has some
similarity to Lariviere and Van Mieghem’s (2004) convergence of the number of strategically
arriving customers over multiple periods to a discrete-time Poisson process. Theorem 7 shows
that service agents competing for demand in a single period under a self-confirming equilibrium
would generate a participation arrival pattern that approaches a Poisson distribution.
Theorem 7 is a limiting result, so we now consider how fast the number of participating agents

converge to a Poisson distribution for participation cost cp = 0.6, wage w = 10, delay-sensitive
demand characterized from (V, c,Λ) = (1, 1000, 7000) and a partition with two priority classes
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with N1 = 5 agents. Figure 2.2(A) reports the maximum absolute deviation in the probability
density function (PDF) and the cumulative distribution function (CDF) for each iteration of
the population of agents N = 10, 20, 50, 100, 1000. In Figure 2.2(B) we illustrate the speed
of convergence of the expected number as well as the variance (which converges slower) of
participating agents which follows the Bin (N, pN ) distribution) to the expectation and variance
of the Poisson distribution with rate n∞ = 11.1 respectively.

2.5 The benefits of coarse priorities

Having characterized agents’ equilibrium behavior for any priority classes partition chosen by
the firm in Step 1 (see Figure 2.1), we now solve firm’s problem of the best way to rank the agents
into priority classes in order to maximize profit. As shown in Theorem 6 any priority classes
partition acts as a screening mechanism to incentivize the agents of a sufficiently high sales
capability to voluntarily participate into the service contest, with a participation probability
that is moderated by firm’s choice of partition.
Firm’s problem is written as

max
k, (ρ̂j)k

j=1

Π = E

[
N∑
i=1

ρi (N ; p∗) · {Vf · Ai − w} · 1{agent i participates}
(
(ρ̂j)kj=1 ; p∗

)]

such that
N∑
j=1

w (ρ̂j − ρ̂j+1) · FN−j:N−1 (amin) = cp (IR)

N∑
j=1

ρj (N ) = λ (N ) a.s. (Budget constraint)

ρ̂j ≥ ρ̂j+1, j = 1, . . . , N − 1 (Monotonicity)

p∗ = 1− F (amin (p∗)) (SCE)

N ∼ Binomial (N, p∗)
(2.7)

Note that we require the incoming demand to be matched with the available participating
capacity for every realization almost surely, allocating demand according to FRFtS routing. The
threshold participation structure of the agents’ equilibrium strategy implies that if an agent i
with unknown for the firm ability Ai finds it rational to participate, all agents with higher
abilities participate as well.
Congestion sensitive demand implies that increasing participation increases the expected

utilization of each priority class. Further, the (IR) constraint characterizes amin and it is linear
in firm’s decision variables. That is, the firm’s problem of choosing a priority classes partition to
maximize the expected total profit of any participating agents in equilibrium becomes a Linear
Program (LP). Its solution is remarkably simple: it is optimal for the firm to coarsely allocate
demand to her agents based on two priority classes, and deliberately ignore any differences in
ability among agents ranked in the same class.

Theorem 8 (Two priority classes of servers are optimal). The optimal priority classes partition
contains N∗1 primary and N∗2 := N −N∗1 secondary priority agents given by the solution of the
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system
N∗1 = arg max1≤j≤N

{
FN−j:N−1(a∗min)

j

}
ρ̂1 · FN−N∗1 :N−1 (a∗min) + ρ̂2 ·

{
1− FN−N∗1 :N−1 (a∗min)

}
= cp

w

 (2.8)

where ρ̂1 = ρ̂1 (N∗1 , N∗2 ; λ) and ρ̂2 = ρ̂2 (N∗1 , N∗2 ; λ).

The intuition behind the optimality of a very coarse, two-priority class partition in our setting
is as follows. Consider the most fine-grained partition with N distinct priority levels, and
coarsen it, for example at the top, creating a new “high” priority class composed of the two
highest ranked agents. This will only increase the utilization (thus the earnings) of the second
highest agent, while also affecting the top ranked agent in the opposite direction (due to the
demand “budget” constraint) since lower priority classes remained unchanged. The induced
ability threshold of the coarse partition cannot increase because the value of the newly created
utilization difference at the top is higher (i.e. the utilization of the third ranked agent vs. the
second ranked), while the probability of getting it (i.e. to be ranked at least second highest)
is the same. That is, the expected payoff of the marginal participating agent will increase
compared to the initial fine partition, and thus, more agents will be eager to enter the system.
Increasing participation attracts higher incoming traffic and benefits both the firm and the
agents. The threshold participation strategy of the servers guarantees that the latter will keep
the same top-ranked agents motivated to participate while attracting some additional lower-
ranked agents. The above informal arguments imply that the optimal partition contains no
more than two priority classes and are made rigorous in Theorem 8 which is a distribution-free
result. In addition, Lemma 3 demonstrates that completely ignoring server priorities (or forming
one priority class by equally allocating demand to any participants) leads to no participation
incentives for the agents. Hence, it is optimal for the firm to create precisely two priority classes.
Theorem 8 offers a causal explanation for why work-from-home contact centers in practice

prefer to rank agents coarsely. In service industries where differences in agents’ rankings are
driven by differences in their ability, the firm is better off throwing away information. Sur-
prisingly, the optimal service contest takes the form of a coarse ranking of agents using two
letter grades: high ability agents (“A”) or low ability agents (“B”) . In particular, an optimal
amount of “A” agents all share the same amount of demand, while any participating, lower
ranked “B” agents are strictly less utilized. Note that our analysis ignores any organizational
costs of offering multiple priority classes. The presence of such costs would only strengthen the
arguments in favor of offering two priority classes.
The contribution of Theorem 8 lies in the intersection of service systems and contest theory.

Conceptually, we view the above result as the “dual”, server-side analog of the (asymptotic)
optimality of two customer priority classes to maximize revenue in large systems (Nazerzadeh
and Randhawa, 2015). Related to the theory of effort-based contests, the celebrated winner-
takes-all (WTA) contest design of Moldovanu and Sela (2001) is essentially a coarseness result
with two reward classes: one “primary” class with the top contestant and a “secondary” class
with the rest contestants receiving no awards. In addition, viewing effort as agents’ “bid” in an
all-pay auction, Moldovanu et al. (2007) show that ranking competing agents into two categories
would generate at least half of the revenue of the most discriminatory, fine ranking when the
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Figure 2.3 Dependence of the optimal number of top priority agents N∗1 (and low priority
N∗2 = N − N∗1 ) on the participation cost increase for Unif [0, 1] distribution of
abilities and parameters (N, w, Λ, V, c) = (100, 1, 200, 10, 2).

distribution of agents’ abilities is “sufficiently convex”. In that regard, Theorem 8 can be viewed
as an extension of these results in an ability-based contest with endogenous awards (i.e. expected
utilization of each class) determined by the strategic participation choices of the agents.
The optimal service contest contains two priority classes and depends on the exogenous pa-

rameters of the system, as well as on the expected utility of each individual agent. However,
in large systems, as Theorem 7 demonstrates, the optimal allocation does not depend on the
distribution of ability in the population.
For instance, in many relevant situations a work-from-home contact center may wish to

induce its agents to work in a period with high cost to participate. Further, it is of interest to
understand how should a manager of a work-from-home contact center react when more agents
sign up into its platform increasing the agents’ pool size. In particular, as agent’s participation
cost or agents’ pool increase should the firm offer more, or fewer positions at the top priority
class? The answer is not clear-cut and it depends on agents’ incentives to participate.

Theorem 9. The optimal number of top performing agents (N∗1 ) is (weakly) decreasing in
agents’ participation cost (cp), and is (weakly) increasing in agents’ population (N). Asymptot-
ically, the optimal allocation does not depend on agents’ ability distribution.

All else equal, faced with a higher incoming potential demand Λ, the expected number of
participating agents of a work-from-home call center would flexibly increase. However, the
dependence of the optimal number of primary priority agents (N∗1 ) on an increase in agents’
participation cost (cp) is less straightforward. On the one hand, an increase in agents’ participa-
tion cost implies that the firm would be able to attract fewer agents. By employing fewer (and
thus more lucrative) high priority positions and reducing the chances of an agent belonging to
one of them, the firm could choose to intensify the competition. On the other hand, the service
contest designer could react by increasing the number of high priority positions, flattening the
competition. Theorem 9 shows that the firm should optimally respond to an increase in agents’
participation cost by offering the same or fewer top priority positions. In Figure 2.3 we illustrate
the effect of the participation cost increase on the optimal number of primary and secondary
priority agents. The reverse intuition holds for when the agents’ population changes.
In addition, the optimal allocation is affected by the distribution of ability in the population,

due to its dependence on the expected utility of the marginal agent. The incentive design of
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a service contest for a product category in which talent is rare (e.g. selling specialized insur-
ance products) is fundamentally different compared to a product category in which the agents
compete with the “average Joe” (e.g. being a work-from-home call representative for Pizza Hut
and competing for up-selling revenues). Somewhat unexpectedly, Theorem 9 establishes that
asymptotically the optimal partition does not depend on the distribution of ability in the pop-
ulation. Specifically, for a sufficiently large population the behavior of the participating agents
is characterized by agents participation cost and piece-rate compensation.

2.6 Extentions

In this section, we show the robustness of the previously obtained coarse priority classes partition
that maximizes firm’s profit under different objectives. First, we investigate a service quality
objective of maximizing the expected value of an exogenously specified number of top sales
agents among those who choose to participate, and an objective of minimizing the expected
waiting time offered to customers.

Lemma 4. Let N∗1 given by Theorem 8. Two priority classes with N∗1 primary priority agents:
(a) minimize the expected waiting time of the customers.
(b) maximize the expected total ability of the top k participating agents, where k ∈ {1, . . . , N}

is exogenously specified by the firm.

Lemma 4 shows that our previously obtained, extremely coarse priority classes partition
is robust along the following two dimensions of service quality: expected wait in the queue
and expected service quality offered due to the intrinsic capability of a service representative.
Given that the agents make strategic participation choices, it is not clear a priori whether
increasing agents’ participation would alleviate customers’ wait due to a negative externality
these additional participating agents would impose on their peers who may in turn decide to
drop out the system causing customers’ wait to increase. Lemma 4 shows that this is not the
case; in equilibrium, forming a partition that maximizes agents’ participation increases the
arriving traffic into the system while at the same increases agents’ expected utilization which
reduces customers’ expected waiting time.
Surprisingly, two priority classes, i.e. the least informative ranking of agents by ability, max-

imize the expected ability of the top participating agents. One may expect that screening the
agents in greater detail, or deploying a finer priority class, would increase the expected ability
of the top participating agents. Again, our result is driven by the uncertainty the firm faces on
the number of agents and their ability who will choose to participate. Increasing the number
of agents who participate, or equivalently minimizing the marginal participating agent, strictly
increases the support of the ability of the participants, and hence is beneficial for the work-
from-home service provider. Lemma 4 is a distribution-free result because what matters only is
the participating probability of the “marginal agent” which is the same across all distributions.
Finally, one may compare the optimal partition of the profit maximizing work-from-home

contact center with the optimal partition that maximizes the total social welfare, i.e. the profit
of the firm, agents’ surplus net the expected waiting time of the customers. We show below
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that our result is robust under this general objective, when the agents’ population is sufficiently
large.

Theorem 10 (Two priority classes of servers asymptotically maximize welfare). Let N∗1 given
by Theorem 8. As agents’ population grows large, two priority classes with N∗1 primary priority
agents asymptotically maximize the welfare of the system, i.e. firm’s profit and agents’ surplus,
net customers’ expected waiting time.

As agents’ population grows large, their individual probability to participate tends to zero.
In addition, the marginal participating agent, who merely covers his participation cost, tends to
the top ability agent. Hence, for a sufficiently large population, only the top agent participates
and covers his participation cost in equilibrium, i.e. earning zero expected utility. Further, from
Theorem 8 and Lemma 4 we know that the optimal coarse partition maximizes firm’s profit
and minimizes the expected waiting time of the customers requesting service. Coupled with
the fact that agents’ payoff asymptotically approaches zero, we have that two priority classes
of servers asymptotically maximize system’s welfare.
Recently, a customer side analog of Theorem 10 has been discovered. In a limiting regime in

which the arrival rate of customers and servers’ service rate scale together, Gurvich et al. (2016)
show that two customer priority classes maximize social welfare in large systems, extending the
revenue-maximizing result of Nazerzadeh and Randhawa (2015). Although the loss of using
two customer priorities is negligible in this limiting regime, Gurvich et al. (2016) show that
there are important differences between the revenue maximizer and social planner in the level
of “classification”, i.e. the number of customers to allocate in each priority class in the asymp-
totically optimal partition. Instead, we show that, asymptotically, the work-from-home contact
center and the customers extract the entire surplus, and hence the optimal priority classes par-
tition of the profit maximizing firm is identical in our setting (in terms of “classification” and
“coarseness”) to the optimal partition of the social planner.

2.7 Conclusion

Motivated by the increasing popularity of on-demand service platforms with independent service
providers and time-sensitive customers, we develop an analytical framework to understand how
such platforms should prioritize demand to their available capacity taking into consideration
their strategic behavior and compensating them on-demand. Through a markovian queueing
model with server priorities and random capacity, we analyze the steady state performance of a
two-sided queue in equilibrium and evaluate the best way to rank the participating agents into
priority classes. Our analytical results establish why various on-demand service platforms rank
their independent contractors coarsely and strategically ignore available information on their
agents’ sales performance.
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Online Product Support Forums: Customers as
Partners in the Service Delivery 1

Organizations increasingly provide service to their customers via an online product support
forum in which service delivery is partially delegated to an active community of users. Through
an analytical model, we examine the relationship between impatient askers who post questions,
types of questions the users choose to respond to and user response rate as a function of the
service rate of the firm. Our results establish that it may be to the best interest of the firm to
strategically reduce its service rate to boost a faster response rate from the community of users.
We identify two key thresholds on asker impatience that suggest a different optimal service rate
of the firm in the presence of the responses of the strategic users. This offers a game-theoretic
explanation for why companies such as Microsoft and Apple with similar products and large
online communities manage their online product support forums differently.

Key words: customer support; service contest; strategic servers; online communities; service
operations

1This Chapter is based on solo-authored work; see Stouras (2016).
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3.1 Introduction

Providing superior service is a challenging problem that often determines the sustainability of
an organization. Firms have traditionally made substantial investments to maintain adequate
capacity to serve demand and to regularly train their service representatives (Gans et al., 2003).
However, the emergence of the internet allowed geographically dispersed users to collaborate
and provide service through a global self-organized online community (Kraut et al., 2012).
Thriving question-and-answer (Q&A) websites such as StackOverflow (Mamykina et al., 2011;
Anderson et al., 2012) and Quora (Wang et al., 2013) let users post technical and general
purpose questions respectively, and receive support by other users-members of the community.
For instance, StackOverflow users can seek or provide help about programming software such
as Python or Mathematica, and Quora members collaboratively create and share knowledge on
healthy eating or business practices.
Recently, organizations with a large customer base such as Microsoft and Apple adopted

online product support forums, as an innovative business model to serve customers by crowd-
sourcing service support to an active community of other customers, in addition to, the avail-
able service representatives of the firm. The key difference with the aforementioned third-party
owned Q&A websites is that product support forums belong to the ecosystem of the respec-
tive firm, which is employing several agents to moderate its content. However, similarly to
community-owned Q&A sites, Microsoft’s Online Communities2 and Apple Support Communi-
ties3 partially utilize their large pool of users employing a contest-based incentive structure to
provide fast and reliable service (Stouras et al., 2016; Terwiesch and Xu, 2008; Boudreau et al.,
2011).

The focus of this chapter is on designing incentives for service in a product support forum
that entails customers who abandon service, endogenous entry of strategic users as well as
endogenous choice among multiple available “contests” that ran in parallel. In our model, the
askers post easy and hard questions that have different awards and costs, and receive answers
by the community of users as well as firm’s servers. The askers are impatient, i.e. they abandon
service after a random amount of time that may vary across easy and hard questions. The firm
acts as a Stackelberg leader and first chooses her capacity correctly anticipating users’ actions.
The users follow by choosing their service rate as well as the probability to respond to each
type of questions. Only answers received by the users during the random impatience time of a
question and before the firm’s servers resolve them are rewarded by the askers. The objective
of the firm is to maximize askers’ service value accounting for any associated staffing costs.
We aim to understand the optimal service strategy of a firm which partially crowdsources its

service support to an active online community of users. Specifically, our research questions are
centered around the following issues:

1. How do strategic community users determine their service rate and which questions to
reply to, in the presence of firm servers that also provide service?

2. How should a firm manage crowdsourcing service to its online community? How often
2https://answers.microsoft.com/
3https://discussions.apple.com/

https://answers.microsoft.com/
https://discussions.apple.com/
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to participate to maximize the number of questions that receive an answer either by its
servers or by the users of the online community?

3. How does askers’ impatience affect users’ and firm’s optimal decisions?

We provide answers to these questions and make several contributions. We characterize users
equilibrium service rate as a function of the service rate of the firm depending on the arrival
of easy and hard questions and the strategic choice of the users among them. Our analysis
demonstrates that the response rate of the users and firm’s service rate initially behave as
complements. However, for a sufficiently fast firm users and firm service rates become substitutes
until a certain point where no user finds it rational to participate for any type of question.
Further, we show that despite any available high-cost-high-reward hard questions, the users

mix their responses and often reply to low-cost-low-reward questions. We term such “mixed”
equilibrium behavior as exploration to reflect the fact that the users respond to both types
of questions with positive probability. For a sufficiently active firm the users’ participation
cost of resolving an easy question offsets any potential awards of reputation benefits for easy
questions, and the users cluster their responses only under any high-cost-high-reward hard
questions available. In that case we say that users perform exploitation, i.e. they respond only
to one type of questions with the highest potential. An exploitation equilibrium outcome may
be particularly inefficient when easy questions are swarming the system and outside users choose
to resolve only the spare hard ones.
From the perspective of the forum manager, we show that there is always a unique service

rate of the firm to maximize askers’ service value net its staffing costs (Lemma 6). Interestingly,
we find that askers’ value is not always increasing with firm’s service rate. This implies that it
may be to the best interest of the firm to strategically reduce its service rate to boost a faster
response rate from the community.
Motivated by the fact that online communities are typically large, we derive a closed form

expression for firm’s profit maximization problem. We prove that depending on askers’ impa-
tience level there are two key thresholds that essentially characterize firm’s optimal capacity
(Theorem 14 illustrated in Figure 3.7). For sufficiently low impatient askers, it is most ben-
eficial for the firm to not resolve any posted questions and let the online community provide
service. As askers’ unwillingness to wait exceeds the first threshold, the firm gains from relying
on users’ support only to a limited extent and partially responding to questions with a two local
maxima of capacity. The dominant service rate for the firm is determined by the cost of its
staffing level contingent on the available traffic and users’ explicit or implicit rewards. Finally,
exceedingly impatient askers would discourage users from participating in which case providing
service entirely in-house becomes necessary for the focal firm.

3.2 Literature

Our work combines research from recent papers in operations management studying service
marketplaces and search among available alternatives with the theory of contests and all-pay
auctions.
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There are several papers in operations management that study strategic agents in services.
Gopalakrishnan et al. (2016) and Zhan and Ward (2015) consider routing and staffing decisions
of a service system in the presence of strategic servers who optimally balance a trade-off be-
tween their capacity cost and value of idleness. Accounting for customer abandonments and a
large-scale self-scheduling workforce, Ibrahim (2015) characterizes the optimal staffing policy of
the firm that sources work to a pool of on-demand servers. Also, in an endogenous participa-
tion contest model with incomplete information Stouras et al. (2016) characterize the optimal
way to prioritize self-interested servers based on their performance when the system is stable
with high probability. Further, Gans and Zhou (2007) assumes partial call center outsourcing,
whereas Ren and Zhou (2008) study contracting issues when outsourcing calls to an outside
service provider. None of these papers consider the outsourcing decision of a service firm to its
customers, who rationally choose to act as servers and resolve firm’s problems.
Our work is also related to the literature of search for the best alternative in a complex

landscape. Weitzman (1979), in a seminal paper, modeled search as a sequential sampling
process of independent alternatives and characterized the optimal policy seeking for the highest
outcome. Employing a contest-based approach Erat and Krishnan (2012) examined the induced
dynamics when a firm delegates the search for the best outcome to a pool of “outside” agents
who endogenously choose among available contests upon entry. DiPalantino and Vojnovic (2009)
study users equilibrium choice among multiple auctions via an all-pay simultaneous auction
model, and Liu et al. (2014) extend these results conducting a randomized field experiment in
a sequential all-pay auction model with complete information and exogenous participation.
Crowdsourcing contests are a powerful mechanism to boost engagement among agents to win

an award to an announced competition. There is a vast literature in economics starting with
Galton (1907) that has largely focused on what award structure offers the highest incentives for
agents to exert effort accounting for potential information asymmetry among the contestants
and the contest designer. Recently, Roels and Su (2013) study the optimal mechanism of
incentivizing agents that are prone to social comparisons, while Terwiesch and Xu (2008) and
Ales et al. (2017) examine the most efficient award structure to provide an innovative solution
to a single posted and well-defined problem. In our setting, the users compete for service but
they are capable of dynamically making endogenous participation decisions as well as strategic
choices among the available alternative “contests” that run in parallel.
There is an increasing body of research in information systems and computer science that

study community-owned Q&A sites. Driven by the abundance of available data from well
designed and maintained Q&A sites such as Stack Overflow, empirical researchers analyzed
users strategic behavior (Adamic et al., 2008; Anderson et al., 2012) in the presence of badges
(Anderson et al., 2013) to promote valuable contributions from the community. Ghosh and
Kleinberg (2013) consider a model of users’ competition and endogenous participation in forums
for education, while Jain et al. (2014) model sequential information aggregation for a single
question to be answered while it is not costly for the users to contribute. We extend this
literature in a dynamic model accounting for users’ costly but endogenous participation and
endogenous choice among possible questions of varying costs and benefits, conditional on entry.
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3.3 Model

We consider a firm providing service over the finite horizon [0, T ] through an online product
support forum composed by three distinct populations: customers who post questions (askers), a
population of community subscribers (users) who are not affiliated with the firm and voluntarily
provide service on-demand, and firm’s employees (servers) who also respond to questions.
The askers post questions related to firm’s products or services to the forum according to a

Poisson process with rate λ > 0. We consider two kinds of questions: easy and hard, arriving
at rates λe and λh respectively such that λe + λh = λ. Further, each asker is impatient, i.e.
he abandons service if he does not receive an answer before a random amount of patience time
that is IID across askers and questions’ types following an Exponential distribution with mean
θ > 0. As shown by Baccelli et al. (1984) irrespective of the number of users or servers available,
askers’ abandonment makes the system stable.
There are N ≥ 2 strategic users (or online community members) who are not affiliated with

the firm but they are members of its online community. Each user i (i = 1, . . . , N) replies at
exponentially distributed service times by simultaneously choosing (i) a service rate µi > 0 to
reply to questions, and (ii) a probability pi to respond to easy questions. That is, user i’s service
rate to easy (resp. hard) questions is µi pi (resp. µi (1− pi)). Each time that a user responds to
a question he incurs a cost ce for easy (resp. ch for hard) questions. Further, we conceptualize
the users’ decision to not participate by allowing the choice of µ := 0.

There are various psychological, cultural or altruistic reasons that explain why users (i.e.
firm’s customers) provide service support to askers (i.e. other customers of the firm); see
Jeppesen and Frederiksen (2006), Chesbrough (2013) and Kraut et al. (2012) for users’ behav-
ior in online communities, Nov (2007) and Yang and Lai (2010) in the context of Wikipedia
contributions and Hamari et al. (2015) for the knowledge sharing economy. The askers posting
questions in online communities such as the ones of Microsoft and Apple reward high contrib-
utors with reputation points that correspond to implicit prizes (e.g. the “Contributor of the
Month badge”, or “Level 9” user) and often explicit rewards (including product discounts and
promotional coupons). In our model, we let ve (resp. vh) represent the total value of all these
rewards to the users in terms of reputation points for answering an easy (resp. hard) question.
Further, we assume that 1 < λeve

ce
< λhvh

ch
so that the users have incentive to participate and

derive higher relative benefit supplying an answer to a hard question compared to an easy one.
A user is rewarded by the asker of a given question with reputation points if and only if

he provided an answer to the question before (i) the firm’s servers respond, and (ii) before
the asker decides to abandon service, whichever happens first. Indeed, in Microsoft’s Online
Communities all value-generating replies are shown under each posted question but if an asker
decides to leave the system before an answer has been received, no later arriving answers are
rewarded by the asker resulting in “unanswered” questions in which case Microsoft incurs a loss
of goodwill cost. Similarly, once a Microsoft staff member responds to a question, any future
responses by the users are redundant.
We denote by 1Aq· the indicator function of the event Aq· of a user i (i = 1, . . . , N) being

awarded for a given question of a given type (see Figure 3.1 for a graphical illustration). Let
Qe (resp. Qh) be the set of the easy (resp. hard) questions posted by the askers over the finite
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Figure 3.1 A product support forum model. All users that arrive before the firm and before
the asker abandons service are rewarded by the asker; no other users are rewarded
for the given question.

horizon [0, T ], and let Ti (·) be the set of times that user i responds to a question choosing
a respective service rate. Then, user i chooses a rate µi and probability pi (resp. 1 − pi) to
respond to easy (resp. hard) questions to maximize his expected utility given by

Ui (µi, pi) = E

 ∑
qe∈Qe

{
ve1Aqe (µi,pi)

}
−

∑
t∈Ti(µi·pi)

ce +
∑
qh∈Qh

{
vh1Aqh

(µi,pi)
}
−

∑
t∈Ti(µi·(1−pi))

ch

 , (3.1)

where the expectation operator E is taken over any sources of randomness. If user i decides
to not participate into the forum (i.e. he chooses a rate µi := 0), he receives a fixed utility
normalized to zero. That is, in order for user i to find it rational to participate user i must
attain Ui ≥ 0.

Before the users make strategic decisions, the firm’s employees (servers, or simply the firm)
move first replying at exponentially distributed service times by choosing a service rate s > 0
incurring a staffing cost4 cf per entry. Similarly to the users case, we allow the servers to
choose a rate s := 0 to capture their non-participation decision. We note that the servers’
rate s captures the firm’s total capacity employing a workforce of an exogenously fixed number
of servers each working at an identical rate s. The firm derives service value (or reputation
benefits) Ve (resp. Vh) from each easy (resp. hard) question posted that receives an answer
before its random impatience time. We assume that cf < Ve < Vh. Finally, the servers are
risk-neutral and choose a rate s in order to maximize the firm’s expected utility of service which
is the difference between the value generated from delivering satisfactory service to the askers
and the cost for replying to questions:

Π (s) = E

 ∑
qe∈Qe

Ve1V Cqe (s) +
∑

qh∈Qh

Vh1V Cqh (s) −
∑

t∈Tf (s)
cf

 , (3.2)

where V Cq· (s) is the set of times that value has been created for each type of question, i.e. when
a posted asker’s question of a given type has received at least one answer during his patience
time. We note that such an answer may arrive into the forum either by the N users who are not
affiliated with the firm (i.e. at no cost to the firm), or by her servers incurring any associated

4That is, we are assuming that it is equally costly for the firm to provide an answer to an easy or hard question.
This is a normalization for brevity of the exposition; our model can be extended to account for such a cost
discrepancy.
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staffing costs. Naturally, we assume that any answers received after askers abandon service are
of no value to the asker resulting in poor service reputation for the firm.
We now summarize the sequence of events in the dynamic game played among the users

and the firm. First, the askers post questions on the forum during the finite horizon [0, T ] and
abandon service after a random time following Exponential distribution with rate θ. Easy (resp.
hard) questions arrive at a rate λe (resp. λh). Second, firm’s servers set a rate s ≥ 0 (incurring
associated costs) to serve demand, correctly anticipating users’ behavior. Third, each of the
N users simultaneously decide on their forum’s participation rate µ ≥ 0 (incurring associated
costs) along with a probability p (resp. 1 − p) to respond to easy (resp. hard) questions. All
answers posted before an asker abandons service or before the servers mark the question as
resolved are rewarded reputation points accordingly.

3.4 Users’ equilibrium behavior

In this section, focusing at a symmetric equilibrium we characterize users’ entry rate and re-
sponse pattern induced in the forum, and its dependence on the question type and servers’
chosen entry rate. Our first result simplifies users’ and servers’ problems of visiting the forum
over the whole interval [0, T ] into a per question decision.

Lemma 5. At a symmetric pure equilibrium each user solves

max
(µ, p)∈[0,+∞)×[0,1]

λe ve
p · µ

p · µ+ s+ θ
− ce p · µ+ λh vh

(1− p) · µ
(1− p) · µ+ s+ θ

− ch (1− p) · µ (3.3)

At a symmetric equilibrium the per question expected utility of a user reflects the expected
benefits of responding to easy (or hard) questions net his participation cost into the forum (eq.
3.3). The fractional terms indicate that the probability a user being rewarded is determined by
whether the user chooses to respond to a given question, and whether his response was delivered
before the question expires and before the servers arrive and mark the question as “resolved”
(see Figure 3.1). Further, each time that a user responds to an easy (resp. hard) question he
incurs a cost ce (resp. ch), whereas the chances of receiving a given award is affected by the
probability he chooses a given type of question over the other one.
Following the sequence of events of §3.3, given a rate s ≥ 0 set by firm’s servers to participate

into the forum each user simultaneously decides on a rate to participate together with the
probability to respond to each type of questions. Theorem 11 characterizes the unique pure
symmetric equilibrium of the service contest game played between the users and the firm.

Theorem 11 (Users’ equilibrium behavior). (i) There is a unique pure symmetric equilibrium
such that the users’ rate to easy (resp. hard) questions is µ∗e :=

(
1
ce

√
ce λe ve (s+ θ)− (s+ θ)

)+

(resp. µ∗h :=
(

1
ch

√
ch λh vh (s+ θ)− (s+ θ)

)+
).

That is, the users’ (global) participation rate into the forum is

µ∗ = µ∗e + µ∗h (3.4)

whereas if µ∗ = 0 the users do not participate.
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Conditional on participation (i.e. if µ∗ > 0), the users’ equilibrium probability of responding
to easy questions is

p∗ = µ∗e
µ∗e + µ∗h

(3.5)

(ii) The equilibrium number of user responses to easy (resp. hard) questions follows Binomial (N, µ∗e)
(resp. Binomial (N, µ∗h)).

Theorem 11(i) gives a closed form expression for the equilibrium behavior of the users for
each type of questions arriving. Specifically, the rate µ∗e (resp. µ∗h) that the users respond
to easy (resp. hard) questions is non-linear in firm’s rate, and it has the same form for both
type of questions. If users’ best response is µ∗ = 0 then the users prefer to not participate. A
positive µ∗ rate indicates that the users decide to participate. Conditional on participation, the
users choose to respond to easy questions with probability p∗ given by (3.5), i.e. they resolve
hard questions with probability 1− p∗. We note that if either one of the response rate to easy
questions, or the rate to hard questions is zero it would indicate that the users resolve only a
certain type of questions despite the possible abundance of questions of the other type into the
forum. We explore the latter issue further in Proposition 3.
Further, a product support forum is a service system with random, on-demand capacity as in

Stouras et al. (2016) and Ibrahim (2015). The forum users strategically decide on whether or
not to participate into the forum, and conditional on participation they choose how frequently
to participate. Each user arrives independently into the forum with rate µ∗ and responds to
easy questions with probability p∗. That is, we may think of users’ responding to easy questions
as performing N independent Bernoulli trials each having a “success” probability µ∗e = µ∗ · p∗.
Hence, the random number of users responding to each type of questions follows the Binomial
distribution with the aforementioned parameters. We note that such a system is stable since
the askers have positive probability of abandoning service (cf. Baccelli et al. (1984)).
The expressions of µ∗e and µ∗h in Theorem 11 imply that a higher cost of participation into

the forum decreases users’ equilibrium rate of responding to questions. Next, we investigate
the less intuitive behavior of µ∗ and p∗ as a function of the firm’s choice of interacting into her
forum, as well as their dependence on exogenous parameters of the system.

Theorem 12 (Properties of µ∗). Let s0, e :=
(
λe ve
ce
− θ

)+
, s0, h :=

(
λh vh
ch
− θ

)+
. In the sym-

metric equilibrium, as a function of the rate s of the servers:
(i) If s0, h > 0 the users participate into the forum with rate µ∗ (s) > 0 given by Theorem 11

for each s ∈ [0, s0, h), and do not participate for s ≥ s0, h. If s0, h = 0 no user participates.
(ii) Let s∗e :=

(
λe ve
4ce − θ

)+
and s∗h :=

(
λh vh
4ch − θ

)+
. The rate µ∗e (s) (resp. µ∗h (s)) at which

the users respond to easy (resp. hard) questions has a unique maximum at s∗e (resp. s∗h) and
no user resolves easy (resp. hard) questions for servers’ rate greater than s0, e (resp. s0, h).
Further, the global service rate of the users into the forum µ∗ (s) attains a unique maximum
(√λe ve ch+

√
λh vh ce)2

8cech at s∗ = (√λe ve ch+
√
λh vh ce)2

16cech − θ.
(iii) Suppose that the askers are heterogeneous in terms of their abandonment rate for each

type of questions, i.e. θe 6= θh. All else being equal, there exists a non-negative number s∗ such
that the global rate into the forum µ∗ (s) has a unique maximum at s∗ = s∗ (ve, vh, ce, ch, θe, θh)
which is decreasing in ce and ch, and in θe and θh.
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Figure 3.2 (A) and (C) Users’ rate as a function of firm’s rate; (B) and (D) Optimal firm’s
rate as a function of users’ service rate cost for easy questions. Parameters used:
λe = λh = 1, (ve, vh, ce, ch) = (13, 35, 2, 5), (θe, θh) = (0.8, 0.2) for (A) and
(B), and (θe, θh) = (0.1, 2.8) for (C) and (D).

A number of insights can be inferred from Theorem 12 on the equilibrium structure of the
game that users play competing for service against the firm. In equilibrium, no user responds
to posted questions into the forum if the servers respond too frequently. Since participation is
costly for the users, a very highly active server induces the users to drop out as they feel that
their chances of winning an award are minimal.
The aforementioned firm’s behavior holds also for each type of questions. In particular, there

are non-negative rates s0, e and s0, h such that if the firm responds faster than s0, e, no user
resolves any easy questions and if they participate into the forum overall, the users only reply
to hard questions. A similar effect holds for s0, h, but no user participates for higher rate than
s0, h (see also Figure 3.2(A) and (C)).
Theorem 12(i) shows a curious non-monotone effect of servers’ activity level on the participa-

tion rate of the users in the forum. In particular, the equilibrium response rate of each user (µ∗)
as a function of server’s rate (s) is unimodal. As the servers increase their rate of responding
from low to moderate values, initially the users’ and server’s rates behave as complements up to
s∗ that maximizes µ∗. Intuitively, in that initial phase the users are competing with the firm for
awards from responding to questions. After s∗, a higher rate of resolving posted questions by
the firm would slow down users’ participation, i.e. µ∗ and s become substitutes, until a certain
value of servers’ rate where µ∗ becomes zero and the users are essentially giving up while only
the firm resolves any posted questions.
The substitutability result of users-firm rates holds for users’ global service rate into the

forum (µ∗), and for their service rate at each type of questions as well (µ∗e or µ∗h respectively).
Theorem 12(ii) proves that users’ rate on easy or hard questions is unimodal as a function of the
firm’s rate. In Figure 3.2(A), (C) we illustrate the non-linear relation and substitutability of the
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rates of the users and the firm for both the easy and the hard questions as well as for the global
service rate of the users, when there are heterogeneous askers in terms of their abandonment
rate for each type of questions, i.e. θe 6= θh.
In addition, we can explicitly solve for the optimal firm’s rate that maximizes users’ rate. As

one can immediately infer from the closed form expression of s∗ in Theorem 11(ii), firm’s optimal
capacity is strictly decreasing in users’ service rate cost, and askers’ impatience parameter. This
result is robust even if we consider askers with varying unwillingness to wait depending on the
type of question posted (Theorem 11(iii) illustrated in Figure 3.2(B) and (D)). The more costly
it is for users to participate for a given category of questions, the slower the firm’s capacity
should be to maximize users’ service rate.
So far we have investigated how firm’s rate of responding to questions affects users’ service

rate into the forum. Conditional on participation, the users make strategic choices over the
available easy or hard questions. Next, we show how firm’s capacity can influence users’ choice
of questions resolved.

Proposition 3 (Properties of p∗). Assume that the askers abandon service with rate θe (resp.
θh) when posting easy (resp. hard) questions, and that these rates are different. Let m (θe, θh) =
min

{(
λe ve
ce
− θe

)+
,
(
λh vh
ch
− θh

)+
}

and M (θe, θh) = max
{(

λe ve
ce
− θe

)+
,
(
λh vh
ch
− θh

)+
}
.

(i) The users perform exploration, i.e. they respond to both types of questions with positive
probability, when the rate of the servers satisfies s ∈ [0, m (θe, θh)). The users perform exploita-
tion, i.e. they respond to one type of questions w.p. 1, when the rate of the servers satisfies
s ∈ [m (θe, θh) , M (θe, θh)). If m (θe, θh) = 0, the users always exploit for s ∈ [0, m (θe, θh)),
while no user participates for s ≥M (θe, θh).
(ii) Conditional on participation and irrespective of the impatient level of the askers, a higher

cost of service for easy questions induces users to respond to hard questions with higher prob-
ability in equilibrium. The reverse holds as the cost for hard questions increases, all else being
equal.
(iii) Suppose that it is equally costly for the users to respond to easy and hard questions (i.e.

ce = ch = c) and that askers are equally impatient (i.e. θe = θh = θ). Then, the equilibrium
probability to respond to easy questions is strictly decreasing in firm’s rate s for s ∈ [0, s0, e).

Increasing firm’s service rate initially motivates the users to respond to both type of questions
with positive probability. Despite the presence of high-cost-high-reward hard questions, the
users mix their equilibrium choices and often reply to low-cost-low-reward questions as well. We
term such “mixed” equilibrium behavior as exploration to reflect the fact that the users respond
to both types of questions with positive probability. Conceptually, users’ equilibrium behavior
into a forum resembles Erat and Krishnan (2012) result in innovation contests of searchers’
clustering in specific regions of the solution space. Our results independently establish and offer
a causal explanation for another form of clustering that arises in a dynamic service setting.
Proposition 3(i) identifies a potential equilibrium inefficiency stemming from users’ strate-

gic actions in an online forum. For a sufficiently highly active firm the users’ participation
cost of resolving an easy question offsets any potential awards of reputation benefits for easy
questions, and the users cluster their responses only under any high-cost-high-reward hard ques-
tions available. In that case, we say that users perform exploitation, i.e. they respond only to
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Figure 3.3 Users’ equilibrium probability of replying to an easy question as a function of
firm’s rate. Parameters used: λe = λh = 1, (ve, vh, ce, ch) = (13, 35, 2, 5),
(θe, θh) = (0.8, 0.2) for (A), and (θe, θh) = (0.1, 2.8) for (B).

hard questions. As shown in Figure 3.3 the users prefer to mix their responses in equilibrium
among the available question types to maximize their gains. However, the self-interested users
eventually choose the best outcome for them and respond to one type of questions w.p.1 when
competing with a very active firm. In this scenario, the system may suffer from insufficient
exploration and the firm cannot rely on outside users but instead has to commit costly internal
resources to provide the desirable service support.
Intuitively, all else being equal, users should attempt the type of questions that offers them the

highest upside potential (Gaba and Kalra, 1999). Although the users strategically choose the
type of questions to respond among the available ones, there are various reasons for preferring
to “exploit”. For instance, the choice of users is affected by a potential low traffic for one type of
questions, or by low reward-cost margins, or by a sufficiently low probability of being rewarded
due to an actively participating server. From firm’s perspective, an exploitation equilibrium
outcome may be particularly inefficient when one type of questions are swarming the system
and users of the firm’s online community choose to resolve only the spare ones of the other type.
As users’ service costs for easy questions rise higher, users increasingly abandon service for

easy questions searching for hard questions with higher potential. In light of the unimodality
result of Theorem 11, one might expect that for a sufficiently high impatient asker posting hard
questions, as the cost of easy questions increases the users may initially prefer hard questions,
but they may find it beneficial to switch to easy questions after a threshold. Proposition 3(ii)
shows that this is not the case, and that with higher service rate cost of easy questions, more
users choose hard questions that exhibit a higher potential. This effect is reversed as the cost
of hard questions increases and more users are encouraged to attempt easy questions (compare
Figure 3.4(A) and Figure 3.4(B)).
In addition, when it is equally costly to reply to each type of questions Proposition 3(iii)

illustrates that as the firm’s forum service rate increases, the users would still mix their responses
among easy and hard questions while they will increasingly attempt more hard questions. As
the firm resolves any available questions at a faster pace, easy questions of low-reward and
low-cost become less attractive to the users who wish to cover their capacity and participation
costs as well. From a managerial standpoint, resolving service requests too fast using internal
resources may cause outsourced service support to self-interested agents to exploit the most
beneficial outcome available while myopically ignoring attractive options of lower potential.
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Figure 3.4 Users’ equilibrium probability of replying to an easy question as a function of
(A), (C) cost of easy questions, and (B), (D) cost of hard questions. Parameters
used: λe = λh = 1, (ve, vh, ce, ch) = (13, 35, 2, 5), (θe, θh) = (0.8, 0.2) for (A)
and (B), and (θe, θh) = (0.1, 2.8) for (C) and (D).

Proposition 4 (Clustering size). The number of user responses to hard questions is stochasti-
cally larger than the number of user responses to easy questions.

Increasing the induced service rate in a platform with outsourced on-demand capacity may
not always be desirable with self-interested users. As the firm increases her service rate there are
two opposing forces at work: (a) initially users’ rate increases competing with the firm for timely
responses, and decreases otherwise, and (b) the users move away from easy questions, because a
hard question becomes increasingly more attracting to the users. As Theorem 12 illustrates, the
net effect leads to an initially higher rate of responding to hard questions at a decreasing rate of
choosing an easy question. After that initial phase, a higher rate of firm’s forum participation
shrinks both users’ participation and their choice of easy questions Theorem 12.
Due to the clustering effect caused by greedy forum users, more users will attempt hard

questions over easy ones in expectation. Depending on the available traffic and related reward-
cost variations this effect may be exacerbated causing little or no participation to one type of
questions at the extreme.
We summarize the key characteristics of user equilibrium behavior in an online product

support forum below before proceeding to analyze in §3.5 the most efficient management of an
online forum:
(A) Users perform exploration of both type of questions for a sufficiently low active server.
(B) Exploitation of users’ choices of hard questions emerges for a moderately active server.
(C) The service rate of a moderately active server and users’ rate are compliments to the

extent where a frequently operating server substitutes users’ rate competing for service. No
user participates in the presence of a rapidly responding server.
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(D) A faster server causes users to choose hard questions more frequently, while she initially
induces faster participation from the online community.

3.5 Managing a forum: How much to delegate to the community?

The results from the previous section highlighted the role of the firm’s service rate into the forum
to encourage users contribute to questions posted by the askers. In this section, we analyze how
the firm should optimally manage her online forum. Specifically, we first investigate the optimal
capacity decision for the firm in order to maximize her expected utility of service.

Lemma 6. Let µ∗ and p∗ be the users’ participation rate and probability of responding to easy
questions in equilibrium. Then, the servers solve

max
s≥0

λe Ve
N · (p∗ µ∗) + s

(N · (p∗ µ∗) + s) + θ
+ λh Vh

N · (1− p∗) µ∗ + s

(N · (1− p∗) µ∗ + s) + θ
− cf s (3.6)

At a symmetric equilibrium firm’s objective (3.6) reflects the net benefits of resolving an
asker’s service request in time (either by her servers or the users of the online community) and
the cost for her servers visiting into the forum. Specifically, any of the N users of the online
community or the servers who respond to a given question result in a happy customer, and
subsequently create service value for the firm. However, tapping into an actively participating
online community of users makes the firm realize these benefits at no staffing cost to its service
operations.

Theorem 13. Let I1 := [0, s0,e], I2 := [s0,e, s0,h] and I3 := [s0,h, +∞) and define
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Then, the firm participates into the forum at a unique rate s∗, where s∗ = arg max
s∈I1∪I2∪I3

{R (s)− cf s}.

Theorem 13 outlines the optimization problem associated with firm’s optimal choice of re-
sources devoted to providing service in her online product support forum. The functions R (s)
and cf s are the “revenues” (i.e. askers’ service value created) and costs when the firm resolves
questions at a rate s. Although one may intuitively expect the askers’ benefit to be increasing
in firm’s service rate (i.e., a faster responding firm will increase the overall rate that a given
question is solved), the following numerical examples (shown in Figure 3.5) demonstrate that
increasing firm’s service rate can lead to lower service value generated for the askers when some
users of the online community participate in the forum. This tension arises only in the regions
I1 and I2 where both users and firm participate. Trivially, firm’s revenue is increasing in s in
region I3.
The intuition behind this non-monotone behavior of firm’s revenue is as follows. Consider

the case where users participate in an “exploration” phase, i.e. they solve both easy and hard
questions with some positive probability. As the firm resolves questions at a faster pace, the
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Figure 3.5 Firm’s revenue as a function of servers’ rate. Parameters used: λe = λh =
1, (ve, vh, Ve, Vh) = (13, 35, 10, 15) and (ce, ch, cf ) = (6, 13.2, 2.2). Askers’
impatience and users’ population varies as follows: (A) N = 100 and (θe, θh) =
(0.8, 0.2); (B) N = 100 and θe = θh = 2.2; (C) N = 10 and θe = θh = 2.2.

users initially increase their service rate behaving as substitutes to firm’s rate increase. In that
region the firm’s revenue naturally increases with firm’s service rate. Then, increasing firm’s
capacity will decrease users’ rate and at some point this decrease more than offsets the increase
in askers’ benefit from a faster firm, hence asker’s benefit (and firm’s revenue) drops. Hence,
even if labor is cheap and staffing costs are negligible, the firm prefers to not interact or to
resolve questions very slowly! This effect is even more pronounced when the online community
is small (Figure 3.5c).
We state the above observations as the following proposition.

Proposition 5. In the presence of a participating online community, firm’s revenue is non-
monotone in firm’s capacity.

Theorem 13 shows that firm’s problem has a unique solution for all feasible values of the
exogenous parameters of the system. Motivated by the fact that online communities are large5

in practice, we describe the optimal strategy for the firm in closed-form as follows.
Theorem 14. Assume that there is a sufficiently large online community of users. Then,
depending on askers’ impatience level, the firm’s utility is maximized at
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respectively.
5For instance, Microsoft Online Communities have more than 2,000 active users who voluntarily provide service
in their free time to other customers (see https://goo.gl/OQkkFH, accessed on September 23, 2016).

https://goo.gl/OQkkFH
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Figure 3.6 Firm’s utility as a function of servers’ rate. Parameters used: λe = λh = 1,
(ve, vh, Ve, Vh) = (13, 35, 10, 15) and (ce, ch, cf ) = (6, 13.2, 2.2). Askers’ im-
patience and users’ population varies as follows: (A) N = 100 and (θe, θh) =
(0.8, 0.2); (B) N = 100 and θe = θh = 2.2; (C) N = 10 and θe = θh = 2.2.

Theorem 14 characterizes the optimal strategy for the firm when it has the option to out-
source service to an abundant online community of users available. In particular, there are
two thresholds in askers’ impatience level that provide a simple rule of thumb for the desirable
service outsourcing level. For sufficiently low impatient askers, it is most beneficial for the firm
to not resolve any posted questions and let the online community provide service. As askers’ un-
willingness to wait exceeds the first threshold, the firm gains from relying on users’ support only
to a limited extent and partially responding to questions with a two local maxima of capacity.
The dominant service rate for the firm is determined by the cost of its staffing level contingent
on the available traffic and users’ explicit or implicit rewards. Finally, exceedingly impatient
askers would discourage users from participating and then providing service in-house becomes
advantageous for the firm. Refer to Figure 3.7 for a graphical illustration of the optimal strategy
of the firm.
Online product support forums typically have a large number of users who interact with

themselves and the contents of the website, generating as well consuming online content. In
Figure 3.6(a) we plot firm’s objective as a function of its rate assuming that there is a medium
size online community (N = 100 users) with a heterogeneously impatient population of askers.
For the given parameters of the system it is optimal for the firm to not participate and let
the users (i.e. its customers) to respond to its customers. However, for less willing to wait
askers some interaction by the firm is needed to motivate its users to participate frequently.
This is in sharp contrast with the case of a small online community (N = 10) where in order
to offer superior service to her askers the firm has to maintain a large capacity that essentially
makes the few users of the community to drop out of the system (compare Figure 3.6(b) with
Figure 3.6(c)).
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Figure 3.7 The optimal management of an online product support forum.

Theorem 14 also shows that demand for service of either the easy (λe) or hard questions
(λh), and firm’s staffing cost cf have an intuitive effect on the optimal capacity level, when it is
optimal for the firm to interact into the forum and partially delegate service to its active online
community. Specifically, as the traffic increases or as the staffing cost cf decreases, the firm
benefits by increasing its service rate.
We summarize the managerial implications of Theorem 14 on whether it is optimal for a firm

to crowdsource its service operations in Figure 3.7. If the firm is best served by either resolving
all questions internally or totally outsource service to its online community (left or right region
in Figure 3.7, respectively), the effect of askers’ impatience reflects what discussed in §3.4. In
particular, the asker’s abandonment rate on users’ and firm’s service rates acts similarly to an
additional participating firm. For a sufficiently patient asker, abandoning service faster will
initially induce users to boost their service rate for both easy and hard questions, up to a level
where the rate of responding in at least one of these question types will drop until it is no longer
beneficial for a user to respond at all. Similarly, confronted with highly demanding askers the
service provider should design its reputation-based incentive scheme appropriately so that to
attract responses from the abundant users of the online community in order to alleviate the
service congestion.

3.6 Conclusion

Motivated by the growing business model of organizations outsourcing service and product sup-
port to an active online community of users to provide fast service to their customers, we develop
a formal analytical model that helps understand how an online forum should be managed. Our
modeling framework captures several unique aspects of such an innovative model for service
delivery, including (i) askers’ unwillingness to wait, (ii) the potential incentive misalignment
between firm and interacting users, and (iii) the extent to which firm’s participation affects
users’ choice of questions available and rate of participation. We identify the following key
characteristics of using customers for customer service summarized below:

• Exploration-exploitation. Users perform exploration of both type of questions for a suffi-
ciently low active server, while users exploit and respond only to one type of questions for
a moderately active server.

• Substitutability of users-firm rates and endogenous participation. The service rate of a
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moderately active server and users’ rate are compliments to the extent where a frequently
operating server substitutes users’ rate competing for service. No user participates in the
presence of a rapidly responding server.

From a managerial perspective, our results summarized in Figure 3.7 provide a simple rule
of thumb for when outsourcing service delivery to customers is desirable for the firm or even
optimal. For sufficiently high willing-to-wait askers, it is most beneficial for the firm to not
resolve any posted questions and let the online community provide service. However, for mod-
erately impatience askers the firm gains from relying on users’ support only to a limited extent
and partially responding to questions. Further, when coping with exceedingly impatient askers
providing service entirely in-house becomes the most advantageous strategy for the firm.
We believe that the aforementioned insight offers a causal explanation on why Fortune 100

companies such as Microsoft or Apple interact differently into their respective product support
forums depending on the type of question being asked. Future research should test the validity
of our model and its assumptions on empirical grounds. It would be interesting to see if our
results continue to remain valid when users have a varying skill level.
In this chapter, we studied a simultaneous move game of endogenous participation of users

with endogenous choice of available alternatives. Further, the forum users are assumed homo-
geneous in terms of their expertise which is a simplification of reality. Our work models the
first order effect observed in a company’s product support forum where all qualifying answers
accumulate reputation points over time from future potential askers who find the answers useful.
In many cases, the forum users have equal chance to get rewarded since they are often highly
uncertain of the asker’s subjective evaluation of their response. We leave to future research to
examine the strategic user behavior considering a sequential model of endogenous participation
and choice, and heterogeneous users with privately known skill levels (see Jain et al. (2014) and
Liu et al. (2014) towards that direction).
A further direction is introducing a sequential model with learning dynamics that combines

strategic askers with self-interested users with endogenous entry and endogenous choice among
multiple postings. Albeit challenging, such an approach could describe askers’ strategic stopping
decision of the successive arrivals of answers to a posed question. Terminating the incoming
answers too fast may resolve asker’s question, although at a potentially lower quality compared
to a belated response from a top-rated user.
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Conclusion

Contests offer a promising alternative to traditional incentive schemes for resource allocation
in distributed marketplaces with self-interested agents who participate voluntarily. However,
the voluntary participation nature of the independent agents of these systems necessitates a re-
thinking of traditional contest theory because direct extensions of incentive structures that work
well in small and fixed populations can fail in large-scale on-demand marketplaces. My thesis
is that it is necessary to take an explicit “on-demand” approach to contest design. Indeed,
the value of contest design theory in on-demand marketplaces will depend on its efficacy to
balance the incentives of independent agents with the objectives of the marketplace, as well as
to create value for the overall ecosystem that the marketplace operates. Once the incentives
are successfully aligned, contests may provide an efficient and easy-to-implement solution to a
variety of problems that on-demand marketplaces face.
To date, most of the literature on on-demand marketplaces has focused on incentives to attract

sufficiently many participants (“quantity” of participants) through the design of the optimal
pricing scheme. Indeed, current ride-sharing business models offer a surge pricing mechanism
to motivate drivers to explore geographic locations with increased demand for a ride. In this
dissertation, I argue that the design of skill incentives should be incorporated into the incentive
design to maintain a high degree of service quality (“quality” of participants). Further, agents
of a broad class of on-demand marketplaces need to be incentivized to take a certain action,
conditional on participation (“effort” of participants). On-demand marketplace designers should
incorporate all these three strategic effects to improve the efficiency of their platforms.
I adopt a process view of the decisions of the agents and the marketplace illustrated in

Figure 3.8. This involves attracting a sufficiently large, heterogeneous agent population, mo-
tivate high participation and attract high performers, incentivize high output among the par-
ticipants and focus on the key subset of the participants (target group) to optimize a given
objective. In contrast, a traditional organization who has full control over its workforce is typ-
ically restricted to staffing (“how many employees to hire?”) and pricing (“how much to pay
them?”) decisions. Given that staffing decisions are placed well before the demand is realized,
the skills of the employees hired for a specific task exhibit a much higher degree of homogeneity
compared to the independent contractors (agents) of a marketplace who are utilized after the
demand realization.
In this dissertation, I develop a theoretical framework that describes the strategic behavior

of agents and the optimal design of agent incentives in on-demand marketplaces to optimize
the objectives of the marketplace and the social planner. A conceptual contribution of my
work is that to attract the right participation and output, a marketplace should discriminate
among its agents. In a meritocracy-based organization, higher performers are higher utilized
and rewarded, while low achievers are eventually screened out. The latter can be seen as a
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Figure 3.8 An on-demand marketplace vs. a traditional organization.

form of dynamic pricing depending on the output generated by an agent. Interestingly, I show
that an over-discriminating pricing scheme can often be detrimental for the efficiency of an
on-demand workforce. The optimal mechanism would never discriminate at a key subset of the
on-demand agent population, despite their performance discrepancy that may be known to the
marketplace! Put differently, hiding information is beneficial.
My dissertation research is consisted of three essays and a case study. The first essay studies

the participation and effort incentives design of an innovation contest. The second essay concerns
the optimal priority classes scheme to maximize profits and welfare of a work-from-home contact
center. The third essay extends the previous essays in a dynamic participation model of a
product support forum in which outside users and firm staff members compete for service. A
brief account of the individual chapters is provided below.

A brief review

Chapter 1 presents a model of an innovation contest. Most papers in the extant contest liter-
ature begin with specifying the number of contestants that are assumed identical to the agent
population. However, an innovation contest is conducted over the internet which allows firms to
tap into the expertise of a heterogeneous, large-scale population of potential contestants (solver
population). Depending on their individual preferences, the solvers strategically determine
whether to participate into the innovation contest incurring a participation cost (participating
solvers).
A first conceptual contribution of Chapter 1 and a key departure from the existing literature

is the distinction between participating solvers and potential solvers. Technically, I treat the ex
ante number of participating solvers as a non-negative random variable who is realized ex post
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the participation decision of the solvers. Focusing on pure symmetric strategies I show that
a Binomial distribution characterizes the number of participating solvers. The participation
probability is a decision variable of the solvers who participate by forming symmetric beliefs
about the actions of the others. In a self-confirming equilibrium, I require solver beliefs to
match the observed outcomes and I show the uniqueness of a pure symmetric equilibrium.
Participating solvers exert effort, which is not observable by the firm. Instead, the firm

observes solver performance which I model as a convex combination of solver (privately known)
ability and (unobservable) effort. The degree to which solver performance depends on solver
ability is a structural characteristic of each contest I refer to as “contest specialization”. Contest
outputs that place a higher weight on solver intrinsic ability (as opposed to his costly effort
choice) may encourage solvers to shirk. To fully characterize the effect of contest characteristics
on solver participation, I study the impact of contest characteristics on the expected number
of participating solvers (“quantitative” measure of participation) and the expected ability of
participating solvers (“qualitative” measure of participation).
Next, I study the best way to allocate a fixed firm budget to solvers to optimize the equilibrium

performance behavior of a subset of the top participating solvers (see also Figure 3.8). The
highest performer receives the top reward of a pre-announced budget allocation, the second
highest performer receives the second highest reward, and so on and so forth. That is, an
innovation contest bears a strong resemblance to an auction. In fact, an innovation contest is an
all-pay auction, since all participating solvers are paying their “bid” (effort) to the “auctioneer”
(firm).

The design of an innovation contest presents two unique challenges compared to standard
auctions. First, the number and type of participating solvers is only known ex post their entry
decision. Further, participating solvers exert effort to compete only with their peers who choose
to participate. Second, the effort exerted by each solver is not observed by the firm and is
typically influenced by solver ability or luck/feedback that are not revealed to the firm. The
techniques proposed in this dissertation chapter, comprising of the use of the self-confirming
equilibrium notion and adverse selection arguments, make significant progress in this direction
for the optimal innovation contest.
The probabilistic view of the number of participants in a contest constructed in Chapter 1

is applied into Chapter 2 that studies the strategic participation decision of the agents of a
work-from-home contact center. Most models in the existing queueing literature either study
routing schemes in a fixed number of servers, or the amount of staff members needed is a
decision variable of the firm. In contrast, the agents of a work-from-home contact center have
a “mind on their own” and they can voluntarily decide whether to work in a pre-specified work
shift. That is, ex ante agent participation the number of available agents to route demand to is
unknown to the agents and the firm. The firm has to attract agents to work.
In addition, Chapter 2 proposes a focus on priorities on servers, as opposed to customer

priorities that is the major concern of the queueing literature to date. From a traditional
queueing theoretic standpoint, the agents of a work-from-home contact center can be viewed as
“virtual customers” who “queue” in order to provide service (as opposed to real customers who
queue to receive service). Given this conceptual connection, I focus on the expected amount of
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time that an agent is busy (agent utilization), which can be considered as the “dual” analog of
the expected waiting time of a customer. The inherent uncertainty on the number of agents
who would choose to participate requires a focus on a relevant performance metric I term the
expected utilization of an agent.

The voluntary participation choice of the agents in a work-from-home contact center pose
three novel research challenges. The first challenge concerns the stability of a service system
when the number of its servers is random. As described in the Introduction, I am aware of three
different methods to proceed with this issue. I propose a model of endogenous demand for service
which guarantees a stable service, while at the same time makes the exact analysis tractable.
The second challenge concerns a closed form characterization of the expected utilizations of
each agent ranked in an arbitrary priority class. Conditional on the number of participants
and using techniques from the traditional M/M/n model, I derive an explicit form for the
expected utilization of each priority class and investigate its properties as the parameters of
the system change. The third challenge encountered is how to solve for the optimal priority
class formation (i.e. number of priority classes to form as well as size of each priority class). I
conceptualize the priority class design of a work-from-home contact center as a contest design
problem. Specifically, since agents are paid only on-demand, one can view their expected
utilization as their expected rewards promised by a contest designer. In addition, I require
all incoming demand (“budget” to pay the agents) to be satisfied or sent in the queue, which
implies a budget constraint to hold for every realization of the participating agents (hence, it
holds in expectation as well).

My approach to innovation contest design and priority classes partition design of a work-
from-home contact center integrates principles from linear programming and game-theoretic
mechanism design with probabilistic arguments. Indeed, the optimal innovation and service
contest design exhibit some similarities. Specifically, I show that a coarse priority classes par-
tition composed of a few high performers generates the highest profits for the work-from-home
contact center. This resembles a generalized form of a winner-take-all scheme recovered in
traditional crowdsourcing contests. Employing a limiting argument of the convergence of the
Binomial distribution to the Poisson distribution, I show that two priority classes asymptoti-
cally maximize social welfare. This is a win-win-win solution for the customers, the agents and
the work-from-home contact center.

Finally, Chapter 3 studies the management of a product support forum in which an orga-
nization with existing staff members taps into a large online community of “outside” users to
serve demand. This is a hybrid, on-demand contact center in which customer service is partially
outsourced back to customers. In a product support forum, there is an abundance of service
representatives who could potentially provide service on-demand at a negligible cost. However,
similarly to an innovation contest or a work-from-home contact center, the focal firm has to
provide appropriate incentives for its community users to respond accordingly. Currently, large
corporations firms such as Microsoft, Apple, Walmart and PayPal use a virtual reward system
of badges to promote fast service of high quality from their communities who engage actively
on-demand. This presents to organizations an unprecedented opportunity to provide low cost
and high quality service. Given its potential for significant improvements over its traditional
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and work-from-home counterparts, I view a product support forum as the future of the contact
center.

The incentive design of a product support forum resembles a contest for service in which
outside users compete with firm servers to resolve customer questions on-demand. However,
a product support forum manager does not simply wish to maximize user participation at
one question only (as in a single innovation contest). Instead, frequent participation from the
community is the objective of a product support forum. Given that easy and hard problems
may potentially arrive into the forum, the users and the firm have the option to choose which
problems to reply to. Users would only receive the associated reward, if and only if, they arrive
before the question-asker abandons service and before the firm. I find that the optimal staffing
of a product support forum depends critically on asker impatience. In particular, I show that
for sufficiently high impatient askers, the firm should employ a larger workforce whereas for
moderately impatient askers, the firm should barely interact into its forum. This provides a
game theoretic reason for why Apple prefers to solely rely on its user community while Microsoft
devotes some paid capacity to respond, in addition to its respective user community.

Directions for future research

Research on the marketplace design spans across many disciplines and presents a fruitful op-
portunity for theoretical, empirical and experimental work in the intersection of operations
management, compensation, incentives, stochastic systems, and matching theory. I outline
below some specific future directions.

Innovation contests with voluntary participation

The theoretical framework regarding solver voluntary participation decision, developed in Chap-
ter 1 can be applied essentially to any variant of the problem already studied in the contest
literature so far that assumed an exogenously fixed set of contestants. In particular, innovation
contests are conducted in a variety of forms including staged contests, sequential contests and
multiple contests that run in parallel. I elaborate further on the last form of innovation contest
that is the least studied in the literature to date.
Most of the current literature focuses on the incentive design of a single innovation contest.

A model of multiple, parallel contests is closer to practice with contest platforms such as Kag-
gle.com, InnoCentive.com and TopCoder.com. A solver in such a contest platform first decides
whether to participate, expending a fixed set-up cost up-front. Conditional on participation,
there is a search cost incurred in order to choose which contest to participate. Then, a solver
exerts effort which depends on his ability type and the actions and types of his competitors.
Crucially, a solver only competes with those who chose to participate in the same contest with
him, which is only revealed ex post his participation. The anticipated number, ability types,
and effort exerted by those solvers would affect the contest choices of the solvers and their effort
decisions. Uncertainty about quantity and quality of the solvers may also lead to inefficiencies
such as “clustering” of solvers into a few contests that they expect to attract low or moderate
competition. Hence, the contest designers need to understand solver behavior in this setting
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to design incentives that increase the breadth of search while at the same time increase solver
effort.
Further, although many contests run in parallel, they differ in the deadline they set and

award structure they offer to attract high performance from outside solvers. To the best of my
knowledge, there is only a handful of papers that study the optimal deadline decision of a firm,
but none that considers this decision in a competitive setting. Setting a shorter deadline may
decrease the quantity of participants but may actually increase the quality of the submitted
solutions. On the other hand, setting a long deadline would attract a larger pool of solvers
who would compete more fiercely with potential detrimental effects on the output generated by
them.

Service systems with random servers

Chapter 2 provides the first queueing model to date in which the number of servers is a ran-
dom variable and is affected by their strategic participation decisions. I have focused on the
special case in which the distribution of participating solvers is Binomial and the arrival and
service times are markovian. Future research could study service settings with richer dynamics
such as voluntary participation and voluntary exit, time-varying participation rates, and non-
markovian service systems with random servers. A deep understanding of the game-theoretical
underpinnings that determine the strategic participation decision of such servers is required.
Only then, researchers can extend current queueing models into that direction.
Another direction is to establish stochastic fluid approximations for all known service perfor-

mance metrics of a service system with on-demand capacity. In particular, fluid approximations
for the expected waiting time, abandonment probability, queue length and server utilization be-
have fundamentally different and new theoretical tools should be developed to discover them.

Work-from-home contact centers

A work-from-home contact center is a marketplace of freelancers who compete to serve customers
of an organization and can be studied from various angles. In particular, one could study
the process of hiring, training, or retaining geographically dispersed agents in the absence of
supervisors (flat organizational structure). In a related paper, Yakubovich and Lup (2006)
study the practice of recruitment in a work-from-home contact center and show that referrals
maintain an important labor market role.
Further, one could compare the service model of a work-from-home contact center with a

question-and-answer forum. Specifically, future research could study the organizational bound-
aries of service systems and whether and when service should be delegated to freelance agents
versus members of an online community. All theoretical notions of service quality and service
performance metrics can be appropriately defined in such a setting and assumptions made on
analytical models can be empirically tested given the abundance of publicly available data of
forums such as StackOverflow.
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Ride-sharing marketplaces

The incentive design for participation of passengers and drivers of a ride-sharing marketplace is
fundamentally different from that of the agents of a work-from-home contact center who enter
for the entire duration of a pre-determined work shift. In particular, in ride-sharing the drivers
should be motivated to stay long in the platform and participate often. Further, the passengers
should be encouraged to use the ride-sharing service frequently. Ways to achieve the latter
include the provision of discounts or coupons for use. I argue that it is essential to target a key
subset of the customer population that uses the service more often than others. Symmetrically,
a marketplace should reward its best independent contractors more than others. Discriminating
on the demand and the supply side combined has the potential to reap the benefits of both
sides.

Competition in ride-sharing marketplaces

Most papers that study two-sided marketplaces to date focus on a single two-sided marketplace,
neglecting any competitors who offer alternatives to the drivers and passengers of a marketplace.
The nature of competition in this strategic interaction resembles the setting with “multiple
innovation contests that run in parallel”. Indeed, in both settings the agents can voluntarily
choose which “contest” to compete in by making a forecast on the number of other contestants
who will also choose similarly. However, the “rewards” in such a contest are stochastic, as
each agent does not know ex ante the realized demand of a given marketplace, which is further
affected by the service level offered by a competing marketplace.

Multi-sided on-demand marketplaces

Another direction is to extend existing two-sided models to multi-sided marketplaces (MSM)
such as LinkedIn. In particular, LinkedIn connects users with potential employers, but brings
together other “sides” such as advertisers and HR analysts who target potential workers and
LinkedIn advisors. How do these different groups interact? When should an MSM invite another
group, and when it should avoid “search” and focus on “breadth” to increase the value generated
by its current stakeholders? I leave such directions to future research.

Online product support forums

An immediate extension of the forum model considered in Chapter 3 is an adverse selection
model that incorporates abilities of users. Indeed, as noted in Chapter 1 in pure symmet-
ric strategies with homogeneous agents either all agents participate, or no agent participates.
However, the possibility of information asymmetry implies that only a subset of the potential
users would actually participate. How many and of which type of users should the product
support forum manager motivate to participate is then a non-trivial decision.
The self-confirming equilibrium techniques developed in Chapter 1 of this dissertation are

directly applicable to characterize the equilibrium behavior of the heterogeneous users of a
product support forum viewed as a contact center. Incorporating an expected waiting time
term into the objective of the firm would render the exact analysis intractable. That is, a
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stochastic fluid approximation would be required to simplify firm’s objective. I expect the
latter to be challenging since the rate of service provided by the users would depend on the size
of user population. Hence, to develop an appropriate stochastic fluid approximation one should
first characterize the aforementioned subtle dependence before applying limiting arguments as
user population grows without bound and by conditioning on the number of participants. To
the best of my knowledge, such stochastic fluid limits in which the participation probability of
random servers depends on server population have not been developed yet.
Further, one can even attempt to compare third-party question-and-answer (user-to-user)

forums with product support forums in which there is interaction of a firm. Whether employing
staff members to reply to questions in the presence of an active online community would result
in an increase in service and profit is left for future research.

Implications for practitioners and the future of work

On the managerial side, the effective incentive design of marketplaces that leverage outside
agents to generate innovation or provide service on-demand requires a deeper understanding of
three factors that confound decision making: the amount and intrinsic quality of participating
agents, the competitive nature of the marketplace, and the objective of the manager. I provide
a theoretical framework that helps understand why some practices and incentive structures who
perform well in some marketplaces might require a careful re-design to be applied into a different
organizational environment. The interplay between a large number of agents of low skills with a
few high performers would demand to boost the incentives at the top in order to screen out low
achievers, in order to attract more participants from the top and soften the competition. The
right incentive structure would critically depend on whether the marketplace manager is focusing
on a short-run objective to increase market share, or on a long-run objective to increase the size
of the agent population as well as their capabilities by investing into training. I caution that
attracting a large number of participants may significantly deteriorate their expected quality,
which may further affect future demand due to a drop in the quality of service offered. The
rationale behind these effects is of significant managerial value.
This dissertation focuses on innovative business models for service support and innovation

creation that essentially define the future of work. I expect that there is a growing trend for
firms to open their boundaries and increasingly adopt crowdsourcing practices in their internal
processes. The benefits of tapping into a crowd on-demand come with a number of challenges
for key stakeholders that need to be incorporated into the decision-making process. Hence, I
expect a similar shift of the academic research from traditional approaches into this emerging
research stream. Such a research shift may even shape a new definition of the field of Operations
Management towards “matching demand with crowdsourced supply”.
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AppendixA
LiveOps Inc.: The Contact Center Reinvented1

[LiveOps] is changing the idea of what the contact center is. It used to be a cost center, sitting in the
back of the building forgotten. You just needed a warm body to answer phones. But that’s absolutely
not the case now. It’s moving to the front office. People are realizing: "Wait a second, they’re actually
spending more time with actual customers than marketing could ever dream of, so why isn’t this part of
marketing?" And managers are getting much more: "Give me more data. Give me more reports", so I
think the agent needs to become the "super-agent".

Marty Beard, CEO, LiveOps2

In September 2005, Harley Jones, Chief Operating Officer of the American Red Cross (ARC),
was spending another restless night watching TV. In a decade-long experience of disaster relief,
Harley had seen multiple relief operations including Hurricanes Isabel, Charley and Ivan, but
none as severe as this one. Hurricane Katrina had recently dissipated, having wrecked the
economies of Mississippi and Louisiana, forcing over a million people to leave their homes – the
biggest diaspora in the history of the United States3. Amid the chaos, the ARC had to help
storm evacuees connect with their relatives by setting up a fast and reliable contact center.

First, he needed to make some calls to major service providers and decide on which offer
to take. As with most cases handled by the ARC, this was a matter of urgency. The main
challenge was how to set up a large enough contact center within hours to be able to respond
efficiently in the midst of the disaster. On top of that, the total cost of the operation had to be
taken into account as it would be covered by donations and charities.

1This Chapter is based on joint work with Karan Girotra and Serguei Netessine; see Stouras et al. (2014).
2Jon Xavier, “LiveOps’ Marty Beard on why those creepy chat boxes on e-commerce sites are changing
customer service forever”, Silicon Valley Business Journal, 21 March, 2014.

3Anthony E. Ladd, John Marszalek, and Duane A. Gill. The Other Diaspora: New Orleans Student Evacuation
Impacts and Responses Surrounding Hurricane Katrina. Retrieved on 10 September 2014.

Konstantinos I. Stouras, Incentive Design of On-Demand Marketplaces
Ph.D. Thesis, INSEAD ©2017
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A.1 The Contact Center Industry

A.1-1 Background

A contact center4 can be defined as a coordinated system of people, processes, technologies
and strategies that provide access to information, resources and expertise through multiple
channels of communication such as e-mail, instant messaging chat, live video chat, as well as
responding to social media posts, apart from the telephone call option traditionally offered,
enabling interactions that create value for the customer and the organization5. The majority of
large companies use contact centers as a means of managing their customer interaction. They
can be operated either by an in-house department responsible for day-to-day communications
with customers (inbound), or by outsourcing customer interactions to a third party (outbound).
The global contact center market was worth US$3.4 billion in 2014 and was growing by 3.6%

per year. Though growth in mature markets such as North America (with a 22% market share)
was fairly flat at just 2.2% per year, Asia Pacific (which accounted for 34% of the market) was
growing at a rate of 4.9% annually and accelerating (see Figure A.2 and Figure A.3).
To understand how a contact center functions and the technology involved (see diagram in

Figure A.4), consider the case of a customer calling the electricity company about paying a
bill. He or she dials a single customer service number. The long-distance or public switched
telephone network (PSTN) company carries the call to the contact center’s privately-owned
switch or private automatic branch exchange (PABX). The call may be connected through the
PABX to an interactive voice response (IVR) that queries the customer’s needs. If the customer
asks to speak to an agent, the call is transferred from the IVR to an automatic call distributor
(ACD). The ACD uses the information from the IVR and the customer data server to route
the call to a trained agent who can handle bill payments and speak the customer’s language.
Computer telephony integration (CTI) technology may also be employed to facilitate agent-
customer interaction by automatically opening the customer’s file on the computer as the agent
picks up the call.
For a contact center in a sales environment, one measure of customer service is the amount

of time that a customer is on hold (i.e. waiting), which is closely tied to revenue per customer.
The longer a customer is on hold, the less excited s/he is about purchasing the product (and the
more likely to hang up). To offer superior service by keeping waiting time short, the traditional
contact center manager makes staffing decisions based on forecasts of the anticipated call volume
(according to time of day/year, weather, industry served, etc). Various metrics are used to
evaluate the performance of a contact center, or more generally a service system. One way to
assess systems’ congestion (the number of jobs fed to agents) is to determine their utilization
level – the percentage time spent serving incoming requests at a chosen service rate. In practice,
the utilization level is the number of jobs assigned to an agent vs. the number of jobs that the
agent can actually do. This varies from 0% (non-busy) to 100% (fully blocked).
Another dimension of the performance of a service provider is the time required for service

4Distinct from call centers, that only handle telephone correspondence, contact centers use a combination of
media such as telephone, fax, letter, e-mail and increasingly, online live chat to provide an all-encompassing
solution to client, and customer contact (see Figure A.1).

5Brad Cleveland, "Call Center Management on Fast Forward”, Third Edition, ICMI Press, 2012.
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delivery. Important metrics include the average time waiting in the queue before receiving
service, the service rate of the servers, and the average queue length. Obviously, the higher
the service rate of the agents, the lower the time required to handle service requests, implying
faster service and shorter queues on average.

A.1-2 Industry evolution and challenges

A major shift in the contact center industry occurred with the advent of internet telephony
(VoIP), and the subsequent fall in international calling rates. Entrepreneurial ventures started
setting up contact centers in cheaper locations such as the Philippines, India and Eastern
Europe, where low overheads and variable costs offered the benefit of reduced costs. In just
under a decade (1995-2005), a large number of US-based contact centers were offshored.
Traditional brick-and-mortar (B&M) contact centers required substantial capital investment

for bootstrapping and functioning. Besides the initial investment required to build a fail-safe
infrastructure (structural as well as telecommunications), they had high operating costs – agent
salaries and human resource overheads accounting for a majority of the expense. The bigger
challenge, however, was their ability to scale up and down. Business cycles were seldom pre-
dictable and organizations needed to ramp contact center activity up or down correspondingly.
Inability to scale up activities meant lost opportunities and unhappy customers, whereas a slug-
gish scale-down implied substantial losses on unwanted overhead. Other concerns included the
time required to train contact center associates and the cost of hiring pricey managers to ensure
that the quality of service was not compromised.
Using off-shore contact centers (business process outsourcing, or BPO) in many instances

provided an unreliable quality of service as they were culturally and geographically distant
from the customers served, even if economically viable. US organizations that had started off-
shoring their business processes often experienced diminishing quality over time. Although the
benefits of quick ramp-up and down were touted, they rarely transpired. Customer complaints
proliferated – accents were different and cultural nuances further obfuscated the quality of
conversations. A survey6 on the offshoring and outsourcing activities of 150 North American
companies and business units from 1998 to 2006 estimated that companies which outsourced
customer service saw a drop of 1% to 5% in market capitalization, as measured by the American
Consumer Satisfaction Index, as well as a significant decline in service quality and customer
satisfaction, depending on the industry they were in.
B&M and BPO contact centers exhibited certain similarities but had distinctive cost struc-

tures (see Figure A.5). Both employed workers of a similar age profile. The typical contact
operator population was comprised of college students working to support their studies with
additional income (often their first job). For most it was regarded as a temporary occupation,
resulting in high employee turnover – typically 100% per year.
Training tended to take place in-house, provided by managers who ensured that agents were

familiar with the equipment. At the request of the client company outsourcing its operations to
a contact center, agents got extra training on site, learning about the culture in order to handle

6Jonathan Whitaker and Claes Fornell, “How offshore outsourcing affects customer satisfaction”, MIT Sloan
Business Review, 2008.



84 Appendix A: LiveOps Inc.: The Contact Center Reinvented

incoming calls.
Although offshore contact centers mitigated staffing issues for the external service provider,

and (given their dispersal across various geographic locations) could operate around the clock,
they were associated with reduced control over business functions, reduced monitoring of quality
assurance, and a need to put policies in place to ensure customer satisfaction.
Agents in offshore contact centers were often unfamiliar with the corporate culture, practices

and values, and thus less dedicated to the company, the customers, and to providing a level of
service in line with company standards. There was also a concern that confidential or sensitive
information was less secure with overseas contact center agents than local agents who had
undergone strict background checks.
Over the years, the concept of the contact center had undergone a series of transformations,

signaling a shift in the consumer’s outlook towards customer care. With advances in technol-
ogy, there was instant access to information, and the dependency on contact centers decreased
gradually. As LiveOps’ Chairman and CEO Marty Beard once put it, “Even the term ‘con-
tact center is antiquated and inadequate, painting an image of dark, backroom operations and
isolated information providers.”
Contemporary contact centers are multi-channel “command centers” with the potential to be

vibrant communications hubs, offering a more entrepreneurial approach to success. No longer
disconnected from other business functions, large-scale contact centers utilized cutting-edge
technology and a vast variety of tools such as CRM, predictive routing, interactive voice response
(IVR), self-service knowledge-based communities, interaction recording and big data analytics
to deliver an exceptional customer experience across multiple communications channels.
Meanwhile, consumers became increasingly ‘connected’, channel-agnostic, and expected brands

to deliver on their promises regardless of the source – be it online, in-store, or via telephone
interaction, mobile or social media. A recent study found that while voice communication was
used to be the preferred means of interaction with a firm 90% of the time, this had fallen dra-
matically to 55%, outpaced by new channels like online chat and social media. Brands that
delivered a frictionless customer experience across all channels were rewarded with customer
loyalty and higher earnings. Indeed, the volume of customer interaction in an absolute sense
had stayed steady, so essentially other channels had grown on top of voice, email and SMS.
People were interacting to a greater extent with firms through their social media pages, sharing
their experiences about a product or brand via customized social networks – in other words,
the remaining 45% was something other than voice.
An additional evolution was that consumers frequently used multiple channels to make a

complaint. A disappointed purchaser of a malfunctioning product would not simply call the
firm in question, but would also email and express his/her complaints on Twitter and Facebook.
Traditional contact centers which focused on one channel were thus unable to handle such cases
effectively. An integrated approach was needed so that consumers interacted with one entity
across all these channels of communication.
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A.2 LiveOps, the Home-shore Contact Center

The increasing availability of the internet in the 1990s had profoundly changed the way people
live and work. Consumers were able to pay bills online and shop 24/7. They no longer waited
for the morning paper since online news was available in real time, and they used online check-
in for flights instead of waiting in line. As long as a device with an internet connection was
provided, they could talk, share documents and collaborate with anyone, anywhere, anytime.
As the Internet became the standard model for connecting geographically dispersed people at
the speed of light, a new paradigm for services and eventually work emerged. In this new ‘home-
shore’ model, employees no longer had to be in the office to communicate. Global communities
appeared where people shared their expertise to resolve an issue faced by another user, and
consumers wrote instant reviews of peer-rated products.
In an era of always-on availability, Steve Doumar and Doug Feirstein saw a way to leverage the

power of the internet to create a new business model in one of the world’s largest labour-intensive
markets: the contact center. In 2000, they founded LiveOps in Fort Lauderdale, Florida, as a
solely home agent contact center. Using traditional contact center technology to route calls to
agents working from home and connected to the internet, LiveOps solved previously unknown
problems such as how to limit background noise, schedule remote workers and maintain agent
quality when the management team had no physical contact with them.
LiveOps’ business model combined two innovations to meet emerging consumer-driven needs.

Firstly, it was a virtual contact center, where 20,000 “live operators” worked as independent
contractors from their own homes and on their own schedules. Using cloud-based solutions,
new agents could choose when to work, form team meetings, get training and learn from the
experience of existing home agents who shared their experience in a private forum. Secondly, it
was based on meritocracy, i.e., best-performing agents received the most calls and, as a result,
higher earnings. Home-based agents were constantly evaluated through a variety of metrics,
including customer feedback, average call-handling time, call resolution rate, overall availability
(i.e. how frequently s/he actually chose to work), past professional experience, and their scores
on standardized tests set by LiveOps, among others. Thirdly, it was following an integrated
approach across the many different channels a customer may have chosen to interact with a
client firm of LiveOps. An agent could now easily follow and respond to a customer request
using voice, SMS, live chat, email and social media posts on Tweeter and Facebook.
In order to provide consistent service quality, LiveOps pursued a strategy of community

management. Instead of command-and-control, the paradigm shifted to social management
based on results. Agents who had control of how they worked were inherently more inspired
brand ambassadors for other agents, and this carried through to customer satisfaction and
outcomes for their clients. As one independent contractor put it in an online forum:

“I have to admit I am not at all competitive - but the opportunity to be on this
program and view my metrics compared to others is very inviting.”

To qualify as a LiveOps agent, candidates had to pass a series of tests aimed at simulating their
reactions when confronting disappointed customers, replying to angry emails or posts made on
social media, or patiently helping customers place an order. Having relevant past experience
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was desirable, but LiveOps’ platform allowed the time necessary for agents to acquire new
knowledge and expertise.
In addition, applicants needed a broadband internet connection and a separate phone line at

home earmarked for work only. The virtual contact center did not cover the costs of broadband
service or separate phone line, but as independent contractors of LiveOps agents could deduct
the costs from their taxes.
Over 300 companies and brands around the world, including Salesforce.com, Symantec, Coca-

Cola, eBay, Royal Mail Group, Ideal Living, Pizza Hut, Amway and BeachBody.com, relied on
LiveOps’ technology to ensure effective omni-channel interactions with their customers.
LiveOps was able to handle volume spikes without sacrificing customer service, in one case

ramping from zero to 50,000 calls in eight weeks while maintaining average order value sales
conversion rates. For another product launch, the virtual service provider handled call vol-
ume spikes of 625% while keeping service levels constant. LiveOps’ flexible staffing structure
compared favourably with the hundreds of agents required for a traditional contact center to
replicate such an extraordinary service level.

A.3 Virtual vs. Traditional Contact Centers

Home-shoring a contact center had several advantages over its brick-and-mortar and offshore
counterparts (see Figure A.5). Firstly, it attracted a more mature population, such as unem-
ployed parents who were typically well-educated and able to work from home while taking care
of children. The fact that agents could choose their work schedule to meet their individual
needs made for greater employee satisfaction and much lower turnover rates than traditional
contact centers. A survey on LiveOps’ distributed workforce reported a 25% to 50% increase in
agent job satisfaction and productivity, while turnover could be as low as 4% (compared to the
100% seen at traditional contact center each year)7.
Secondly, since agents worked remotely, the contact center could provide e-training oppor-

tunities to those interested in gaining further knowledge and skills, or in learning from the
experience of the other agents shared via a global virtual forum. Such a community allowed
knowledge to be easily transferred between employees, minimizing the need for supervisors and
managers.
Thirdly, since remote agents were essentially freelancers working from home, a virtual contact

center could record all customer interactions, and, using a variety of performance metrics, route
calls to the best performers. In contrast, traditional contact centers might have legal restrictions
on which conversations they could record – the lines used required a minimum of security as
they operated in-house, compared to agents using remote desktops to handle sensitive customer
data.
A cloud-based contact center had fewer operating and fixed costs compared to a brick-and-

mortar or offshore center. Being able to attract talent across the country, LiveOps could choose
from a huge network of 20,000 independent agents, working from wherever they wanted, when-
ever they wanted, while the company paid them only for the time they were actively engaged

7www.liveops.com/engage, accessed on 10 September 2014.
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with customers.
In essence, a virtual contact center is a “contact center upside down”8 (see Figure A.6).

Traditional contact centers hired office-based workers who were paid a fixed wage per hour,
irrespective of how much demand was routed to the center. This involved operational ineffi-
ciencies, as customers faced non-negligible waiting times during peak hours (so higher staffing
levels were needed), whiles operators were sitting idle whenever there was a significant drop in
demand.
A traditional contact center can be thought of as a build-to-forecast (BTF) production sys-

tem9, whereas a virtual contact center is a flexible service provider that is responsive to demand
levels in a similar way to a build-to-order (BTO) production line10. If demand for the service is
high (as in the morning) remote agents will be tempted to work from home in the expectation
of proportionally high earnings. The situation is reversed in off-peak hours, when significantly
fewer will be keen to work. In this way a virtual contact center manages the risk of not having
customers for its employees – and they in turn are willing to tolerate this in exchange for the
flexibility and freedom to choose their work schedule and become “CEO of their own destiny”
as Maynard Webb, a former CEO of LiveOps, put it11.

A.4 Challenges for Virtual Contact Centers

While it seemed that LiveOps was ‘here to stay’, its model of work had some significant chal-
lenges that threatened the fundamentals of its organizational existence. Some felt it was walking
a thin line with its agent recruiting process. A civil complaint filed on 3 December 200712 al-
leged gross underpayment of salary and benefits for a number of home agents who had worked
for LiveOps for over a year, as reported in the Houston Chronicle:

“Two agents in Georgia contend they don’t even earn the minimum wage when their
training time and non-paid downtime between calls are factored in. The two women
argue they are employees, not independent contractors, and are entitled to minimum
wage and overtime pay.”

Eventually, LiveOps won the lawsuit13, defending its model of “freedom in the work-space”.
However, the complaint was filed in Georgia – a state which favored employers –but some
experts believed that if such complaints were filed in California or any other liberal state, the
outcome could be more severe. Moreover LiveOps was a growing company and thus generally
‘off the radar’, but how many more such lawsuits might be brought should the company plan
to go down the IPO route?

8Karan Girotra and Serguei Netessine, "The Risk-Driven Business Model: Four Questions That Will Define
Your Company”, Harvard Business Review Press, 2014.

9Gérard Cachon and Christian Terwiesch, “Matching Supply with Demand: An Introduction to Operations
Management”, Third Edition, McGraw-Hill/ Irwin, 2012.

10Ibid.
11As cited in an interview of Maynard Webb by Barry Kibrick of Between the Lines available at

www.youtube.com/watch?v=RCk9l47ajPE, accessed on 20 September 2014.
12http://goo.gl/JJkQ8h and http://goo.gl/p91n5h, retrieved on 11 August 2014.
13http://goo.gl/RGJUfM, retrieved on 10 August 2014.
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The elimination of fixed operating costs such as infrastructure, buildings and fixed employee
benefits and wages created another major challenge for a home-shore service provider: how to
attract a sufficient number of agents at a specific time of the day to ensure a high service level
for clients. Furthermore, the quality of those choosing to work was also uncertain; a virtual
contact center could hardly force agents of its overall workforce population with a specific
historical performance evaluation level and experience to become available and work. Logically,
if the rules of the system (payment scheme) were properly set, the supply of home-based agents
should “follow” the customer demand for the service. By virtue of being able to flexibly adjust
the supply of workers to meet demand, this matching is what differentiated LiveOps from its
competitors.

A.5 Weighing the options

A brick-and-mortar, offshore contact center, or virtual service provider – which system would
be best suited apply to the Katrina crisis? CEO Harley Jones started listing his priorities.
Firstly, efficiently responding would require a significantly large number of agents to allow

the ARC offer superior service and negligible waiting time to storm evacuees. They would have
to work around the clock, so that an always-on service was provided. There would be no room
for dissatisfied customers who could further overload the whole system by calling back to ask
for further information – each request had to be resolved by the first call made.
Secondly, the time required to set up such a large-scale contact center was a key component of

the relief effort. Jones estimated that an efficient response would require a hotline to be provided
in a matter of hours. If advertised through mass media, this could create an unprecedented spike
in call volume. He was projecting that several hundred agents would be required to connect
storm evacuees with their relatives for over a week, working 24/7, but he was still not sure
whether demand would significantly exceed this estimate, rendering the whole contact center of
the ARC “uncontactable”.
Thirdly, the cost of the whole operation had to be taken into account. The offers of the

various service providers under consideration would need approval by the ARC budget branch.
Although the disaster had attracted a lot of large last-minute donations and government funds,
the ARC still had to allocate funding efficiently, without neglecting its charitable and non-profit
organizational nature that had to provide emergency assistance in the event of other disasters
as well.
Last but not least, the task to be implemented was fairly simple and did not require any prior

technical or professional expertise by the operators. Agents would have to be responsive and
to be able to search information gathered by the ARC on ‘found’ individuals, connecting them
with their relatives. The Katrina crisis was unique in the history of the United States. Total
property damage and associated costs were estimated to exceed $108 billion (2005), roughly
four times the damage wrought by Hurricane Andrew in 199214. Selected agents had to fully
understand the gravity of the situation, and thus operators would have to show great sensitivity
towards lost family members calling in panic to connect with their close relatives.
14http://en.wikipedia.org/wiki/Hurricane_Katrina, accessed on 29 September 2014.
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Having dialed the number of a major service provider, Harley Jones was put on hold after
an automatic voice reassured him that he had called the right number, followed by a burst of a
song by R.E.M. “The End of the World as We Know It”. As he held the line, he was struck by
how the story of LiveOps had revolutionized the whole service industry.
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Source: Flickr (http://goo.gl/87LcAg), accessed on 1 September 2014.

Figure A.1 View Inside a Traditional Contact Center.
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Source: Consolidated from Parker, P. M. 2010, ’The 2009-2014 Outlook for Contact Centers in
Africa’, ’The 2009-2014 Outlook for Contact Centers in Asia & Oceania’, ’The 2009-2014
Outlook for Contact Centers in Europe’, ’The 2009-2014 Outlook for Contact Centers in Latin
America’, ’The 2009-2014 Outlook for Contact Center in North America & the Caribbean’,
’The 2009-2014 Outlook for Contact Centers in The Middle East’.

Figure A.2 Global Market Potential for Contact Centers (US$ Million).
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Source: Consolidated from Parker, P. M. 2010, ’The 2009-2014 Outlook for Contact Centers in
Africa’, ’The 2009-2014 Outlook for Contact Centers in Asia & Oceania’, ’The 2009-2014
Outlook for Contact Centers in Europe’, ’The 2009-2014 Outlook for Contact Centers in Latin
America’, ’The 2009-2014 Outlook for Contact Center in North America & the Caribbean’,
’The 2009-2014 Outlook for Contact Centers in The Middle East’.

Figure A.3 Global Breakdown of Market Potential for Contact Centers (US$ Million): 2014.
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Figure A.5 A Comparison of Different Types of Contact Centers.
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Figure A.6 The Evolution of the Risk Profile of the Contact Center.
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AppendixB
Order statistics

Suppose that A1, . . . ,AN are N independent and identically distributed (IID) random variables
from a common cumulative distribution function (CDF) F (·) and probability density function
(PDF) f (·). Following the notation of Shaked and Shanthikumar (2007) let Aj:N denote the
random variable corresponding to the jth smallest observation in the random sample (ai)Ni=1,
also known as the jth order statistic. Further, let Fj:N (·) and fj:N (·) denote the CDF and the
PDF of the jth order statistic Aj:N , respectively. Then,

Fj:N (a) =
N∑
i=j

(
N

i

)
F i (a) (1− F (a))N−i = N

(
N − 1
j − 1

)∫ F (a)

0
tj−1 (1− t)N−j dt (B.1)

fj:N (a) = N

(
N − 1
j − 1

)
F j−1 (a) (1− F (a))N−j f (a) = N {Fj−1:N−1 (a)− Fj:N−1 (a)} f (a) , (B.2)

for j = 1, . . . , N and for a in the support of Aj:N . A solver is ranked jth highest among N , if
and only if, he is ranked (N − j + 1)th lowest among N . Using differences of order statistics
we have

P [Ai ranked jth highest among N ] = FN−j:N−1 (ai)− FN−j+1:N−1 (ai)

=
(
N − 1
j − 1

)
F (ai)N−j (1− F (ai))j−1

=
(
N − 1
N − j

)
F (ai)j−1 (1− F (ai))N−j ,

(B.3)

where we define F0:N (ai) := 1 and FN :N−1 (ai) := 0. The third equality follows by the pigeon-
hole principle.
Next, we state a stochastic order relation among two random variables X and Y, as well as

some useful facts involving order statistics and first order stochastic dominance.

Definition 1 (Usual Stochastic Order). Let X and Y be two random variables such that

P [X > x] ≤ P [Y > x] , for all x ∈ R
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Then X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y).

Equivalently, we have that X ≤st Y iff P [X ≤ x] ≥ P [Y ≤ x], for all x ∈ R.

Lemma 7 (Shaked and Shanthikumar (2007)). The following relations hold for all x, y in the
support of the respective random variable:
(a) If X ≤st Y, then FX (x) ≥ FY (y) and E [X ] ≤ E [Y]
(b) Xi:N ≤st Xi+1:N , for each i ∈ {1, . . . , N − 1} (or Fi:N (x) ≥ Fi+1:N (x))
(c) Xi:N ≥st Xi:N+1, for each i ∈ {1, . . . , N − 1} (or Fi:N (x) ≤ Fi:N+1 (x))
(d) Xi+1:N+1 ≥st Xi:N , for each i ∈ {1, . . . , N − 1} (or Fi+1:N+1 (x) ≤ Fi:N (x))



AppendixC
Contest models and their equivalence

In this Chapter, we compare the innovation contest model of “expertise-based projects” of
Terwiesch and Xu (2008) with a special case of the model of Moldovanu and Sela (2001) in
which cost of effort is convex.

A risk neutral firm announces a way to split her total budget available among any participants
out of N agents by offering at most N−1 positive rewards Ri such that∑N−1

i=1 Ri and Ri ≥ Ri+1

for all i. For simplicity we shall focus on the winner-takes-all case (R1 = R, and Ri = 0 for all
i), but our argument carries over for any number of rewards.

The agents are endowed with ability ai which is privately known and drawn from a common
knowledge distribution F with f > 0 on the support [a0, 1] with a0 > 0. Each agent may exert
effort ei at a cost C (ei) and produces performance (or output) xi = x (ai, ei). We assume that
C ′e > 0 and C (0) = 0, and x′a > 0 and x′e > 0.

We have the following two contest utility models:

• Expertise-based projects of Terwiesch and Xu (2008). Assume that agent performance is
given by xi = ai+ log ei and cost of effort is a linear function C (ei) = c · ei. We normalize
c = 1 for simplicity. Then, the utility of agent i is

uTX (ai, ei) =

R− ei, if ai + log ei = maxj 6=i {aj + log ej}
−ei, else

(Terwiesch and Xu Model)

Note that the Terwiesch and Xu Model implies that the firm does not observe agent ability
neither their effort in order to reward them. Instead, the highest agent ranked by performance
receives the award.

• Contest model of Moldovanu and Sela (2001) with convex costs. Assume that agent
performance is given by xi = ei and cost of effort is a convex function C (ei) := c(ei)

ai
with

c′e > 0 and c (0) = 0. Then, the utility of agent i is

uMS (ai, ei) =

R−
c(ei)
ai
, if ei = maxj 6=i {ej}

− c(ei)
ai
, else

(Moldovanu and Sela Model)
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Note that in the Moldovanu and Sela Model agent effort is observable by the firm and the
highest agent ranked by effort receives the award.
The next proposition compares these two models and shows that they lead to qualitatively

similar agent actions in equilibrium by transforming and re-interpreting the quantities involved.

Proposition 6. The Terwiesch and Xu Model and the Moldovanu and Sela Model are output
equivalent in equilibrium.

Proof of Proposition 6. We start with the Terwiesch and Xu Model and we note that the
ability ai of agent i is private information to him and is a constant for him. Set âi := exp (ai).
Then, ranking agents according to x̂i = ai + log ei = log âi + log ei = log (âi ei) we have

uTX (ai, ei) =

R− ei, if ai + log ei = maxj 6=i {aj + log ej}

−ei, else

=

R− ei, if log (âi ei) = maxj 6=i {log (âj ej)}

−ei, else

=

R−
exp(x̂i)
âi

, if x̂i = maxj 6=i {x̂j}

− exp(x̂i)
âi

, else

= uMS (âi, x̂i) ,

where we wrote the effort in Terwiesch and Xu Model as ei = exp(x̂i)
âi

. The above shows that
the Terwiesch and Xu Model can be written in the form of the Moldovanu and Sela Model in
which the ability of the agent i is âi and he determines his effort x̂i = x̂i (ai) at a cost of effort
c(x̂i)
âi

= exp(x̂i)
âi

.
Similarly, a multiplicative form for agent output xi = ai ·ei can be written as an additive form

by taking logarithms and re-interpreting the meaning of “ability”, “effort” and “performance”.
In particular, instead of ranking agents according to xi = ai · ei, we rank them according to the
additive model x̂i = log xi = log (ai · ei) = log ai+log ei = âi+êi. Relative rankings according to
xi would be preserved by ranking according to x̂i because the log function is strictly increasing.
A multiplicative form for agent output xi = ai · ei implies that ability and effort may be

complements instead of substitutes as in the quasi-linear models of Chapter 1 and Terwiesch
and Xu (2008). In a multiplicative model, when an agent exerts zero effort, his output is zero.
For example, at Kaggle no contestant can ever win without submitting a (costly) solution to a
posted problem, no matter how high ability he may have. As shown above, we can recover this
intuition in an additive model in which all participating agents exert strictly positive effort in
equilibrium. We refer the reader to the unpublished manuscripts of Erat and Lichtendahl Jr
(2015) and Erat and Lichtendahl Jr (2016) for related generalizations of contest models.
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Proofs of Chapter 1

D.1 Summary of notation used

Seeker:

• k: (exogenous) number of candidate solutions, or the top solutions that the seeker is
interested in (k ∈ {1, . . . , N}).

• R: (exogenous) budget.

• Ri: reward allocated to solver ranked ith out of N and R1 ≥ R2 ≥ . . . ≥ RN ≥ 0 (at least
one is non-zero).

• wi: (exogenous) weight of performance ranked ith out of N in seeker’s objective for
i = 1, . . . , N and w1 ≥ w2 ≥ . . . ≥ wk > 0.

• m: seeker’s choice of awards. It is the number of non-zero awards the seeker splits its
available budget into.

• Πk (m): seeker’s profit given a choice of awards m for an exogenously fixed k.

Solvers:

• N : (exogenous) number of potential solvers, or size of solver population.

• F : (exogenous) ability distribution with strictly positive density f on its support [a0, 1] ⊂
[0, 1].

• FN−m:N−1 (·) and fN−m:N−1 (·) the (N −m)th lowest out of N − 1 order statistics CDF
and PDF of the ability distribution F (·) respectively.

• ai: ability of solver i, i = 1, . . . , N . The ability of solver i is a random variable for the
seeker denoted by Ai with distribution F .

• ei, e∗i : effort, and equilibrium effort chosen by a solver i respectively.
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• ui: expected utility of solver i.

• xi = γ ai + (1− γ) ei + ε: performance of solver i with ability ai, effort choice ei and
subject to a random shock ε (seeker’s subjective taste of a submitted solution).

Other parameters:

• cp: (exogenous) cost to participate into the contest.

• γ: (exogenous) contest specialization; the degree to which solvers substitute ability for
effort, γ ∈ [0, 1].

• m: upper bound on number of awards m.

D.2 Summary data from innovation contest platforms

In this section, we offer summary statistics for the distribution of innovation contest rewards
from data collected1 from the well known platforms of InnoCentive.com and Kaggle.com, as well
as from the popular ideation marketplace of Tongal.com recently analyzed by Kireyev (2016).
Most seekers in these platforms were pre-announcing their available budget in advance, as well
as their precise way to rank their solvers through a detailed description and were committing to
a pre-announced allocation of their budget among the top participating solvers. We note that
all these platforms strongly encourage the seekers to guarantee a reward allocation by displaying
a prominent message to any prospective seeker, in order to attract high participation and high
output from the solvers. Next, we describe our data collection in detail.
First, using a Python script we scrapped all 598 contests that took place on InnoCentive.com

during 2012-2015. We find that 192 contests organized offered the entire budget of their re-
spective seeker to the best solution provided by the top participating solver. Table D.1 reports
summary statistics for the distribution of rewards and the pre-announced amount of the seekers’
budget for InnoCentive.
Second, we use publicly available data of all contests that offered a monetary reward on Kag-

gle.com since its inception on April 2010 until July 2016 (see Table D.2). Such contests include
“featured” and “research” contests, as opposed to contests associated with a non-monetary re-
wards such as “recruitment” contests in which hiring companies are selecting candidates for a
data-related position by organizing a contest on Kaggle, or “in class” contests which aim to
teach data analysis to novice users.
Lastly, we report a summary of the data collected by Kireyev (2016) from Tongal.com during

2011-2015 (the platform was founded in 2009). We note that, by design, all Tongal contests have
the Multiple-Winner (MW) format we use in §1.2. As Kireyev describes, “all Tongal contests
divide rewards evenly among winners. For example, each winning submission receives $250 if
a contest offers four rewards with a total budget of $1,000”. He also adds that “an important
aspect of many contests is that not all participants who consider entering choose to do so”.
Interestingly, Kireyev empirically shows that on average 78% of the entire solver population
participate in a Tongal contest. We reproduce Table 2 of Kireyev (2016) in Table D.3.

1All data collected are publicly available to download from the author’s website.
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Pre-announced contest characteristics Min Median Mean Max

Number of prizes 1 2 3 15
Total budget of seeker $1,000 $10,000 $20,987 $710,000
Number of WTA contests 192 (32%)
Total number of contests 598

Table D.1 Data from InnoCentive.com during 2012-2015.

Pre-announced contest characteristics Min Median Mean Max

Number of prizes 1 3 2 10
Total budget of seeker $100 $10,000 $26,053 $500,000
Number of WTA contests 52 (33%)
Total number of contests 156

Table D.2 Data from Kaggle.com during 2010-2016 publicly released at goo.gl/NAx4sV.

Pre-announced contest characteristics Min Median Mean Max

Number of prizes 1 4 5 50
Total budget of seeker $500 $1,000 $1,450 $10,000
Participating solvers 58 187 193 499
Solver population per contest 58 235 247 623
Participating solvers/ Solver population per contest 37.23% 78.48% 77.53% 100%

Table D.3 Data from Tongal.com during 2011-2015, as reported in Table 2 of Kireyev (2016).

Overall, the data provided in Table D.1, Table D.2 and Table D.3 show the robust finding
that most innovation contests in these platforms offer multiple rewards. In particular, 68% and
67% of the contests organized on InnoCentive and Kaggle offered multiple rewards respectively.
In addition, the median number of rewards on InnoCentive was two with a maximum of 15.
Similarly, Kaggle seekers pre-announced rewards with a median of three and a maximum of
10. Strikingly, there were seekers who split their available budget with as many as the top 50
participating contestants on Tongal.

D.3 Proofs

Throughout this Chapter, we make extensive use of the following auxiliary result.

Lemma 8 (Maximum Principle). Let A1, A2, . . . be a sequence of strictly positive IID random
variables and let N is a discrete random variable with support {0, 1, . . . , N} which is indepen-

http://goo.gl/NAx4sV
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dent of the Ai. Then:
AN :N ≤st AN :N

Further, AN :N = AN :N a.s., if and only if, P [N = 0] = 0.

Proof of Lemma 8. Conditional on a arbitrary realization {N = n}, due to Lemma 7(d) we
have that for all n ≥ 0: An:n ≤st AN :N . Further, condition on a random sample {a1, . . . , aN} of
(deterministic) size N . We denote the ordered sample as {a1:N , . . . , aN :N}, where aN :N denotes
the highest observation out of N . Consider a sub-sample of the top n observations out of N :
{aN−n+1:N , . . . , aN :N}. It is immediate that the highest ranked observation out of the top n
observations is less or equal than the highest ranked observation out of the entire population N .
To see that, note that when n = 0, max� = 0 (by definition) whereas max {a1:N , . . . , aN :N} =
aN :N > 0, and that when n ≥ 1 then max {aN−n+1:N , . . . , aN :N} = max {a1:n, . . . , aN :N} =
aN :N . Then, if AN :N = AN :N a.s., we have that P [N = 0] = 0. Inversely, if {N = 0} is a
measure zero event, then AN :N = AN :N a.s.
The Maximum Principle simply states that the maximum of a top subset of a population of

random size is equal to the maximum of the entire population, if and only if, the top subset has
size greater or equal to one with probability one.

Proof of Lemma 1. (a) Suppose that the seeker has chosen to split her budget into m = N

rewards of value R
N each to anyone who chooses to participate. Then, no solver exerts any effort

in equilibrium, since exerting effort is costly and it would not increase his chances of getting a
higher expected revenue.
Next, we analyze the participation behavior of the solvers focusing on symmetric equilibria.

Assume that solver i participates with probability pi while all other N − 1 solvers participate
with a best response probability p = b (pi) that is assumed differentiable. The seeker does
not have to spend her entire budget (since ∑N

j=1Rj ≤ R) and would allocate as many equal
rewards as the endogenously determined participants. Hence, the utility of solver i depends
on how many other solvers K decide to enter: R

1+K − cp, where K ∼ Binomial (N − 1, b (pi))
due to symmetry. Hence, the expected utility of solver i is the difference between his expected
earnings and his participation cost:

ui (pi) = pi ·R− pi · cp − (N − 1) b (pi) · cp (D.1)

For pi to be a best response, ui (pi) must be maximized at pi. The FOC wrt pi gives R − cp −
(N − 1) b′ (pi) · cp = 0. Since we are seeking for a symmetric equilibrium, we substitute pi = p

which implies:
p∗ = R− cp

(N − 1) cp
(D.2)

This is the best response for a solver, if and only if, b (pi) ∈ [0, 1]. Therefore, solver participation
probability is given by min

{
max

{
0, R−cp

(N−1)cp

}
, 1
}
. It is immediate that in pure and symmetric

strategies either all, or none of the N solvers participate.
(b) Allocatingm = max

{
n ∈ {1, . . . , N} : R

n ≥ cp
}
equal rewards of size R

m inducesm solvers
to participate and exert zero effort in equilibrium as their expected earnings are not affected by
their choice of costly effort. Subject to the condition R < N cp, no solver participates form > m
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rewards since he can not cover his participation cost. If m < m, then an ex ante uncertain num-
ber of N solvers participate with a probability p < 1. Hence, N = ∑N

i=1 1{solver i participates}
is a sum of independent Bernoulli trials with success probability p. By definition, we have that
N ∼ Binomial (N, p).

Proof of Theorem 1. Consider a population of N solvers and suppose that the seeker has
decided to allocate a reward Rj to an solver whose performance is ranked jth among N . We
prove the existence and uniqueness of a symmetric pure BNE for the general case where the
rewards satisfy Rj ≥ Rj+1 for j = 1, . . . , N −1 and there are at least two different rewards such
that ∑N

j=1Rj ≤ R. We specialize to the sub-class of contests with MW format in the end of
the proof.
We introduce some notation. All N solvers simultaneously make participation probabil-

ity and effort actions, which are denoted by α = (pi, ei) ∈ {0, 1} × [0, +∞). Let x =
(x1, . . . , xi, . . . , xN ) and e = (e1, . . . , ei, . . . , eN ) denote the performance and effort vectors
respectively. Let φ = (φ1, . . . , φi, . . . , φN ) denote the participation status of the solvers, where
φi ∈ {0, 1}. Then, solver i participates, if and only if, φi = 1, and does not participate otherwise.
It is crucial to note that solver i competes only with the number of other solvers who choose
to participate, and that this number is not known to him. Let Φ−i denote the set of all possi-
ble φ−i. Further, conditional that solver i participates, the (realized) number of participating
solvers is n

(
φ−i

)
= 1 +∑

j 6=i φj , and are not know to solver i ex ante participation.
Conditional on an action vector α = (α1, . . . , αi, . . . , αN ), the expected utility of a partici-

pating solver i is

ui (αi; α−i) =
∑

φ−i∈Φ−i


(∏
j 6=i

p
φj

j (1− pj)1−φj

)n(φ−i)∑
j=1

Rj ·P
[
x∗i ranked jth out of n (φ−i)]


− e∗i
ai
− cp,

(D.3)

where solver i receives reward Rj , if and only if, he is ranked jth highest among the n
(
φ−i

)
participating solvers.
Assume that in equilibrium the performance of agent i, x∗i , is strictly increasing in his ability

ai. We prove that our assumption is true in the proof of Theorem 2. Then, the expected utility
of agent i is also strictly increasing in his ability ai, and is further continuous and defined on
the compact set [a0, 1]. Hence, all participating solvers receive strictly positive expected utility,
expect of a unique solver with ability amin (which is an event of measure zero). We refer to
the solver with ability amin as the “marginal participating solver” who expects zero utility and
hence is indifferent in participating or not, and exerts zero effort.
Focusing on symmetric pure equilibria, solver i conjectures that all other solvers participate

with participation probability p̃−i. Given our assumption that solver expected utility is strictly
increasing in ability, each of the rest N − 1 solvers participate and are ranked higher than the
marginal solver with probability 1−F (amin), for all i. That is, in a symmetric BNE we require
all solvers conjecture the same participation probability p̃, which does not depend on solver i’s
ability and must be equal to the actual participation probability, i.e. we have p̃ = 1−F (amin).

Further, our assumption that solver expected utility is strictly increasing in ability implies
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that if an agent with ability aj participates, all other agents with higher abilities participate
as well. That is, only a subset of random size of the top ability solvers participate. Then, the
expected utility of a participating solver is written as

ui (αi; α−i) =
N∑
n=0


(
N

n

)
p̃n (1− p̃)N−n

 n∑
j=1

Rj ·P [x∗i ranked jth out of the top n]


− e∗i
ai
− cp,

Also, we assume (and show subsequently on Proposition 2) that the event that no solver par-
ticipates {N = 0} is of measure zero, which implies that

P [x∗i ranked jth out of the top n] = P [x∗i ranked jth out of the entire population N ]

for all realizations of the number of participating agents n ≤ N and for all j = 1, . . . , n due to
Lemma 8.

Hence, the expected utility of a participating solver is simplified to

ui (αi; α−i) =
N∑
j=1

Rj ·P [x∗i ranked jth out of N ]− e∗i
ai
− cp (D.4)

Next, we characterize the marginal participating solver who has ability amin and exerts effort
e∗ (amin) = 0. The expected utility of the marginal participating solver when each of the rest
N − 1 solvers participate with probability p̃ = 1− F (amin) and rank ahead of him is given by

u (amin, 0; p̃) =
N∑
j=1

Rj ·
{(

N − 1
j − 1

)
(1− p̃)N−j p̃j−1

}

=
N∑
j=1

Rj · {FN−j:N−1 (amin)− FN−j+1:N−1 (amin)}

=
N∑
j=1

(Rj −Rj+1) · FN−j:N−1 (amin)

= cp,

(D.5)

where we define RN+1 := 0. Since F (·) is strictly increasing on [a0, 1], the order-statistics
distribution FN−j:N−1 (·) is also strictly increasing on [a0, 1] for any rank j = 1, . . . , N − 1.
Hence, the expected utility u (·, 0; p̃) is continuous and strictly increasing. Also, observe that
the terms in brackets in u (amin, 0; p̃) are the PDF of the Binomial (N − 1, p̃) distribution.

That is,∑N
j=1Rj ·

{(
N − 1
j − 1

)
(1− p̃)N−j p̃j−1

}
is the expected reward related to this Binomial

distribution with Rj ≥ Rj+1. By a coupling argument u (amin, 0; p̃) is strictly decreasing in p̃.
Assuming differentiability this implies that

∂u

∂p̃
(amin (p̃) , p̃) < 0 (D.6)
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Let amin be the solution (if it exists) to the equation u (a, 0; p̃) = cp. If u (a, 0; p̃) > cp for all
a ∈ [a0, 1], we set amin := a0; if u (a, 0; p̃) < cp for all a ∈ [a0, 1], we set amin := 1. The strict
monotonicity of the expected utility u (·, 0; p̃) implies that if a solver with ability a participates,
all other solvers with abilities a′ ≥ a participate as well. Due to symmetry there is a unique
(global) participation threshold amin = amin (m; p̃) which is the same across all solvers.
In the following two steps, we show that the solvers have a unique Bayes-Nash equilibrium

belief defined as p̃ = 1− F (amin).
Step 1 : The unique participation threshold amin = amin (p̃) is strictly decreasing in the belief

p̃. Indeed, the strict monotonicity of solvers’ expected utility implies that ∂u
∂amin

(amin, p̃) > 0
for all a ∈ [a0, 1]; hence, for a = amin we have ∂u

∂amin
(amin, p̃) > 0. We have also shown in (D.6)

that ∂u
∂p̃ (amin (p̃) , p̃) < 0. The Envelope Theorem

du

dp̃
(a, p̃)

∣∣∣∣
a=amin

= ∂u

∂amin
(amin (p̃) , p̃) · ∂amin

∂p̃
(p̃) + ∂u

∂p̃
(amin (p̃) , p̃) = 0

implies that ∂amin
∂p̃ (p̃) must be positive.

Step 2 : There exists a unique solution p̃∗ ∈ [0, 1] to the equation p̃ = 1 − F (amin (p̃)).
Indeed, since F is assumed continuous and strictly increasing in ability, the function k (p̃) :=
1 − F (amin (p̃)) − p̃ is continuous and strictly decreasing in p̃ ∈ [0, 1]. If p̃ = 0, then anyone
who enters will cover his participation cost with positive probability and hence amin (0) > 0
and k (0) = 1 − F (amin (0)) > 0. If p̃ = 1, then this can not be a BNE since in that case
the Budget Condition implies that everyone who enters does not cover his participation cost.
So, ex post the decision to participate is not rational. Hence, if p̃ = 1, amin (1) < 1 and
k (1) = −F (amin (1)) < 0. By the Intermediate Value Theorem, a unique p̃∗ must exist such
that k (p̃∗) = 0.

The above characterize solvers’ participation strategy in the general, weakly monotone al-
location of rewards that satisfy Rj ≤ Rj+1 for all j = 1, . . . , N − 1. In the special case of
MW contests, we substitute Rj := R

m for j ∈ {1, . . . ,m} and Rj := 0 for j ≥ m + 1 into∑N
j=1 (Rj −Rj+1) · FN−j:N−1 (amin) = cp and we find that the marginal solver amin is the

unique solution of the equation

R

m
· FN−m:N−1 (amin) = cp (D.7)

and solver unique participation probability satisfies p = 1− F (amin).
Proof of Theorem 2. Similarly to the proof of Theorem 1 we first solve the general case

where the rewards satisfy Rj ≤ Rj+1 for j = 1, . . . , N − 1 and there are at least two different
rewards such that ∑N

j=1Rj ≤ R. If the contest specialization satisfies γ = 1, then exerting
effort does not improve the performance ranking of a solver and all participating solvers exert
zero effort in equilibrium: e∗ (a) = 0 for all a ≥ amin. Next, we find solvers’ equilibrium effort
when γ < 1.
Suppose that a participating solver i chooses performance xi and that all other participating

solvers choose a performance level according to the best response function x∗ which is assumed
to be strictly increasing and differentiable in the ability type ai of solver i. The expected utility



108 Appendix D: Proofs of Chapter 1

of solver i is given by D.4.

By the law of total probability the (unconditional) probability that participating solver i wins
the top reward R1 is

N−1∑
k=0

P [xi ranked 1st among top k] ·P [K = k] =
N−1∑
k=0

P [xi ranked 1st among N ] ·P [K = k]

= P [xi ≥ x∗ (Ai)]N−1 = P

[
Ai ≤ (x∗)−1 (xi)

]N−1

= F
(
(x∗)−1 (xi)

)N−1

Trivially, if solver i encounters no other opponents upon entry he exerts zero effort and wins
the top reward R1. Note that the ability of solver i is not known to the rest solvers, denoted
by the random variable Ai. Similarly, the probability that solver i receives the second reward
R2 is

P [xi ranked 2nd among N ] = (N − 1) ·P [xi < x∗ (A)] ·P [xi ≥ x∗ (A)]N−2

= (N − 1) ·
(
1− F

(
(x∗)−1 (xi)

))
·
(
F
(
(x∗)−1 (xi)

))N−2

= FN−2:N−1
(
(x∗)−1 (xi)

)
− FN−1:N−1

(
(x∗)−1 (xi)

)
By the expression (B.3) in Appendix B we have that

P [xi ranked jth among N ] =
(
N − 1
N − j

)
F
(
(x∗)−1 (xi)

)j−1 (
1− F

(
(x∗)−1 (xi)

))N−j
= FN−j:N−1

(
(x∗)−1 (xi)

)
− FN−j+1:N−1

(
(x∗)−1 (xi)

) (D.8)

Solver i determines his performance level xi solving

max
xi≥γ·ai

N∑
j=1

(Rj −Rj+1) · FN−j:N−1
(
(x∗)−1 (xi)

)
− 1

1− γ
xi − γ · ai

ai
, (D.9)

Observe that if
max

1≤j≤N
(Rj −Rj+1) < 1

(1− γ) · ai
or equivalently for a sufficiently high contest specialization

γ > γ̂ := 1− 1
a0 ·max1≤j≤N (Rj −Rj+1) (Gamma Condition)

choosing x∗i := γ · ai leads to positive expected utility (conditional on participation), while
choosing any x > x∗i results in negative expected utility. Hence, when the Gamma Condition is
satisfied, solver i chooses x∗i = γ · ai, i.e. he exerts zero effort in equilibrium.

Fix a contest specialization γ ∈ [0, γ̂]. The FOC of solvers’ expected utility (D.9) wrt xi gives

N∑
j=1

(Rj −Rj+1) · fN−j:N−1
(
(x∗)−1 (xi)

)
· 1

(x∗)′
(
(x∗)−1 (xi)

) = 1
(1− γ) ai
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At the symmetric equilibrium, xi = x∗ (ai) and the above condition becomes

N∑
j=1

(Rj −Rj+1) · fN−j:N−1 (ai) ·
1

(x∗)′ (ai)
= 1

(1− γ) ai

(x∗)′ (ai) = (1− γ)
N∑
j=1

(Rj −Rj+1) · fN−j:N−1 (ai) · ai (D.10)

Imposing the boundary condition of the “marginal participating solver” x∗ (amin) = γ amin on
(D.10) and integrating both sides from amin to ai we have

x∗ (ai) = γ amin + (1− γ)
N∑
j=1

(Rj −Rj+1) ·
∫ ai

amin

a · fN−j:N−1 (a) da (D.11)

Since Rj − Rj+1 ≥ 0 for at least two rewards, the expression (D.11) verifies that x∗ (ai) is
strictly increasing in ai and continuously differentiable as initially assumed. Note that the
strict monotonicity of x∗ (·) implies that ties in solver performance ranking (which are broken
uniformly at random) are events of measure zero, due to the atomless assumption on the ability
distribution F .

Using x∗ (ai) = γ ai + (1− γ) e∗ (ai) we get the equilibrium effort for γ ∈ [0, γ̂]

e∗ (ai; γ, m) = γ

1− γ (amin − ai) +
N∑
j=1

(Rj −Rj+1) ·
∫ ai

amin

a · fN−j:N−1 (a) da (D.12)

By the expression (D.12) we have that the equilibrium effort e∗ (ai; γ, m) of solver i is non-
monotone in his ability ai. Further, the definition of γ̂ implies that participating solvers exert
positive equilibrium effort, i.e. e∗ (a; γ) > 0 for all a ≥ amin (m).

Next, we check that the sufficient second-order condition (SOC) is satisfied. The derivative
of the expected utility of solver i wrt his effort ue (ai, e) is non-negative for all e < e∗ (ai) and
non-positive for all e > e∗ (ai). Thus, the expected utility u (ai, ·) is pseudo-concave and it is
maximized at e∗ (ai) given by (D.12).

Finally, we have initially considered the general case where the reward allocation satisfies
Rj ≤ Rj+1 for j = 1, . . . , N − 1. In a MW allocation, we substitute Rj = R

m for j ∈ {1, . . . ,m}
and Rj = 0 for j ≥ m + 1. Then, max1≤j≤N (Rj −Rj+1) = R

m and the Gamma Condition is
satisfied when R < 1

a0·(1−γ) . Set γ̂ =
(
1− 1

a0·R

)+
< 1. For any arbitrary contest specialization

γ ∈ [0, γ̂] the equilibrium effort in the special case of MW contests is

e∗ (ai; γ, m) =


γ

1−γ (amin (m)− ai) + R
m ·
∫ ai

amin(m) a · fN−m:N−1 (a) da, ai ≥ amin
0, ai < amin

(D.13)

Further, for any arbitrary contest specialization γ ∈ (γ̂, 1] we have that e∗ (a; γ) = 0 for all
participating solvers with ability a ∈ [amin, 1].

Proof of Proposition 2. We first show that R > cp is a necessary and sufficient condition
to guarantee that at least one solvers participate. Equivalently, we show that P [N ≥ 1] = 1, if
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and only if, R > cp. For sufficiency, assume that R > cp. Denote by

Pj (p) =
(
N − 1
j − 1

)
(1− p)N−j pj−1

For any weakly monotone allocation of rewards (Rj)Nj=1 let p0 ∈ (0, 1) be the unique solution to
the equation ∑N

j=1Rj ·Pj (p) = cp. Such a contest must induce solvers to enter with probability
higher than p0 in a symmetric equilibrium. Suppose towards a contradiction that all solvers
enter with probability p ∈ (0, p0). This cannot be an equilibrium as solver i has a profitable
deviation. Indeed, exerting zero effort while all other solvers do not participate yields utility
up = ∑N

j=1Rj ·Pj (p)−cp > 0. Hence, his expected utility is up·(1− p)N−1+0·
(
1− (1− p)N−1

)
>

0, a contradiction to the definition of the symmetric equilibrium. For necessity, assume that
there exists a feasible reward allocation (Rj)Nj=1 that induces N ≥ 1 to participate w.p. 1 when
cp > R. Then, ∑N

j=1Rj · Pj (p)− cp ≤ R− cp < 0, a contradiction.
Next, we show that R < N cp is a necessary and sufficient condition to guarantee that at

most N − 1 solvers participate. Equivalently, we show that P [N ≤ N − 1] = 1, if and only
if, R < N cp. For sufficiency, assume that R < N cp. By the definition of m we have that
allocating m equal rewards results in m < N agents to participate w.p. 1 since R

m − cp = 0. For
necessity, assume that there exists a feasible reward allocation (Rj)Nj=1 that induces N ≤ N − 1
to participate w.p. 1 when R ≥ N cp. Then, allocating N equal rewards of value R

N induce all
N solvers to enter w.p. 1 and exert zero effort. Hence, P [N ≤ N − 1] = 0, a contradiction.
Finally, the condition R > 1

amin
is a sufficient and necessary condition for solvers to exert

strictly positive effort upon entry (as shown in Theorem 2). Hence, imposing R > 1
a0
> 1

amin
is

a sufficient condition for this to happen.
Proof of Corollary 1. (a) Fix an amin ∈ [a0, 1] and let ∆ (m) := 1

m · FN−m:N−1 (amin)−
1

m+1 · FN−(m+1):N−1 (amin). Using the integral representation of order statistics (B.1) we have:

∆ (m) = N

N −m

(
N − 2
m− 1

)∫ F (amin)

0
xm−1 (1− x)N−1−m dx

− N

N −m− 1

(
N − 2
m

)∫ F (amin)

0
xm (1− x)N−1−m−1 dx

or

∆ (m) = N

(N −m) (N −m− 1)

(
N − 2
m

)∫ F (amin)

0
xm−1 (1− x)N−2−m {m−Nx} dx

The sign of ∆ (·) is determined by the term in brackets which is first positive and then negative.
Hence, there is a unique m∗ such that ∆ (m) is positive for m < m∗, zero at m∗ and negative for
m > m∗. The LHS of (D.7) describes the maximum participation cost that can be supported
for a given amin, and we have shown that it is single-peaked in m. Since the function 1

m ·
FN−m:N−1 (·) is strictly increasing, we have that amin strictly increases in cp for a given m.
Taken together, these imply that choosing an allocation that maximizes the value of solvers’
participation cost that can be supported would induce the minimum possible value of amin.
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(b) Fix an arbitrary value of solvers’ population N and an arbitrary m ∈ {1, . . . , m}.
Lemma 7 (d) implies that

1
m
· FN−m:N−1 (a)− 1

m
· FN+1−m:N (a) > 0, for all a ∈ [a0, 1]

and for all distributions F (·) that are strictly increasing in their support. Hence, by definition
(D.7) for each N̂ < N we have that amin

(
N̂
)
≤ amin (N). Lastly, as proved in Theorem 1 the

induced threshold ability amin is the same for all solvers, and it does not depend on their ability
realization.
(c) By its definition (1.2) amin does not depend on γ and is a function of the order statistics

distribution of F (·).
Proof of Lemma 2. Fix an arbitrary m ∈ {1, . . . , m}. We have

ΠN (m) = E

[
N∑
i=1
{x∗i (Ai; m) is ranked ith out of N} · 1{solver i participates} (m)

]

=
∫ 1

amin(m)

N∑
i=1
{γ ai + (1− γ) e∗i (ai; m)} · f (ai) dai

= N ·
∫ 1

amin(m)
{γ a+ (1− γ) e∗ (a; m)} · f (a) da

As shown in Moldovanu et al. (2007) p.357 we have

∫ 1

amin(m)

(∫ a

amin(m)
x · fN−m:N−1 (x) dx

)
· f (a) da = m

N
·E [m, N ; amin (m)] ,

where we set E [m, N ; amin (m)] :=
∫ 1
amin(m) x · fm:N−1 (x) dx. Hence,

ΠN (m) = N ·
∫ 1

amin(m)
{γ a+ (1− γ) e∗ (a; m)} · f (a) da

= N ·
(
γ

∫ 1

amin(m)
a · f (a) da

)
+Nγ

∫ 1

amin(m)
(amin (m)− a) f (a) da

+ (1− γ) N R

m

∫ 1

amin(m)

(∫ a

amin(m)
x fN−m:N−1 (x) dx

)
f (a) da

= γ N amin (m) · (1− F (amin (m))) + (1− γ) R ·E [m, N ; amin (m)]

which completes the statement.

Lemma 9. (a)
∑N
i=1E [Ai:N ] = N E [A].

(b) If X and Y are two random variables such that X ≤st Y, then for any measurable set
A ⊆ R we have X · 1A ≤st Y · 1A.

Proof of Lemma 9. (a) By definition and linearity,∑N
i=1E [Ai:N ] =

∫
x
{∑N

i=1 fi:N (x)
}
dx.

Let S (x) := ∑N
i=1 fi:N (x). We have

S (x) =
N∑
i=1

N

(
N − 1
i− 1

)
F i−1 (x) (1− F (x))N−i f (x)
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= f (x)
F (x)

N∑
i=1

i

(
N

i

)
F i−1 (x) (1− F (x))N−i

In the second equality, we used the fact that the respective sum is simply the expectation of
a binomial distribution Binomial (N, F (x)), which equals N · F (x). The above implies that∑N
i=1E [Ai:N ] =

∫
xS (x) dx = N

∫
x f (x) dx.

(b) The statement follows by Theorem 1.C.6 and Theorem 1.C.1 of Shaked and Shanthikumar
(2007).

Lemma 10. Let f1 and f2 be continuous functions on [a0, 1]. Assume that:
(1)

∫ 1
a0
f1 (x) dx ≥ 0

(2) f1 changes sign from negative to positive at a unique x0 ∈ [a0, 1]
(3) f2 is a (weakly) increasing function
Then, we have that

∫ 1
a0
f1 (x) f2 (x) dx ≥ 0.

Proof of Lemma 10. We have that∫ 1

a0
f1 (x) f2 (x) dx =

∫ x0

a0
f1 (x) f2 (x) dx+

∫ 1

x0
f1 (x) f2 (x) dx

≥ f2 (x0)
∫ x0

a0
f1 (x) dx+ f2 (x0)

∫ 1

x0
f1 (x) dx

which implies the statement.
Proof of Theorem 3. Assume that cp > 0 and fix an arbitrarym ∈ {1, . . . , m}. To simplify

our notation, we assume differentiability and we apply Leibniz’s rule of “differentiation under
the integral sign” treating m as a continuous variable (a discrete analog holds as well):

dΠN

dm
(m) = N ·

d

dm

∫ 1

amin(m)

{
γ a + (1− γ) e∗ (a; m)

}
· f (a) da

= N (1− γ)

∫ 1

amin(m)

∂e∗

∂m
(a; m) f (a) da−N

∂amin

∂m
(m) · f (amin (m)) ·

(
γ amin (m) + (1− γ)

���
���

�: 0
e

∗ (amin (m) ; m)

)
= N · (1− γ)

∫ 1

amin(m)

∂e∗

∂m
(a; m) · f (a) da︸ ︷︷ ︸

effort effect

−N · γ amin (m) ·
∂amin

∂m
(m)︸ ︷︷ ︸

participation effect

(a) If contest specialization is zero (γ = 0), then the aforementioned “participation effect”
disappears and by Lemma 2 we have that

ΠN (m) = R ·E [m, N ; amin (m)]

= R ·E [AN−m:N | A ≥ amin (m)]

Due to stochastic dominance, Lemma 7(a) and (b) imply that E [AN−1:N ] ≥ E [AN−mN ] for
all m ∈ {1, . . . , N − 1}. Hence, by Lemma 9(b) we have that ΠN (1) ≥ ΠN (m) for all m ∈
{1, . . . , N − 1}, or that WTA is optimal when γ = 0 and cp > 0. Further, note that the
statement follows also by substituting k := N and γ := 0 into Theorem 5, due to Lemma 9(a)
that relates the expected value of a random variable to the total sum of the expected order
statistics.
(b) Theorem 3(a) shows that the “effort effect” is zero at m = 1. Further, amin (m) > 0 and

Corollary 1(a) shows that there exists a unique m∗0 ∈ {1, . . . , m} such that amin (s) > amin (m∗0)
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for all s ∈ {1, . . . , m∗0 − 1}, and amin (m∗0) < amin (s) for all s ∈ {m∗0 + 1, . . . , N − 1}. For
γ ∈ (γ̂, 1] participating solvers exert zero effort and in that case it is optimal for the firm to
minimize the induced amin, that is to allocate m∗0 equal awards to the top m∗0 ranking positions.

For γ ∈ (0, γ̂] we consider two cases:

Case 1 (m > m∗0): dΠN
dm (m) < 0, hence ΠN (m∗0) > ΠN (m).

Case 2 (m ≤ m∗0): dΠN
dm (m) is single crossing from positive to negative, hence a unique

m̂ ∈ {1, . . . , m∗0} exists such that ΠN (m̂) > ΠN (m). That is, WTA is not always optimal for
γ ∈ (0, γ̂].

Proof of Theorem 4. Consider the budget-to-participation cost ratio r := R
cp
. We show

below the dependence of m∗ on r holding all else parameters constant.

We have shown in Theorem 1 that solvers’ expected utility is strictly increasing in ability. By
its definition (1.2), the ability threshold amin is increasing in r, i.e. for each r̂ < r we will have
that âmin (r̂) < amin (r). We first show thatm∗0 = m∗0 (r) is weakly decreasing in r. To show that
m∗0 (r, amin) = arg max1≤j≤m

{
FN−j:N−1(amin)

j

}
is (weakly) decreasing in r, it suffices to show

that m∗0 (r, amin (r)) is (weakly) decreasing in amin for a fixed r. Corollary 1 shows that for a
given amin, the ratio Aj (amin) := FN−j:N (amin)

j has a unique maximum wrt j. Further, the func-
tion h (amin) := max1≤j≤mAj (amin) is increasing in amin. Hence, arg max1≤j≤mAj (âmin) ≥
arg max1≤j≤mAj (amin), which implies that m∗0 (r̂, âmin (r̂)) ≥ m∗0 (r, amin (r)). Finally, by
Theorem 3(b) we have that by definition m∗ can not increase in r.

(a) and (c) Since m∗ = m∗ (r) is weakly decreasing in r, for a fixed cp we have that m∗ =
m∗ (R) is weakly increasing in R. Further, for a fixed R we have that m∗ = m∗ (cp) is weakly
decreasing in cp.

(b) Seeker’s objective (1.5) implies that for an arbitrary γ ∈ (γ̂, 1]: m∗ = m∗0 is the optimal
number of awards, which does not depend on γ (see (Corollary 1)(c)). Also, for γ = 0 we have
shown in Theorem 3(a) that WTA is optimal. For an arbitrary γ ∈ (0, γ̂] the first terms in
seeker’s objective (1.5) are maximized at m∗0 ≥ 1 (these terms are strictly increasing in γ), and
the last term (which is strictly decreasing in γ) is maximized at m∗ = 1. Hence, as γ increases
(i.e. as the weight on solvers’ effort that determines the rank of their performance decreases)
the m∗ = arg max1≤m≤m ΠN (m; γ) cannot decrease.

(d) We first prove that m∗0 = m∗0 (N) is weakly increasing in N . We have shown that for a
fixed amin, m∗ (cp, amin) is (weakly) decreasing in cp. We further have that all else equal, cp
increases in amin, and Corollary 1(b) shows that amin is weakly increasing in solvers’ population
N . Hence, m∗0 = m∗0 (N) is weakly increasing in N . Finally, by Theorem 3(b) we have that by
definition m∗ can not decrease in N .

Proof of Theorem 5. Fix an arbitrary m ∈ {1, . . . , m} and an arbitrary k ∈ {1, . . . , N}.
We have

Πk (m) = E

[
k∑
i=1

wi · {x∗i (Ai; m) is ranked ith out of N} · 1{solver i participates} (m)
]

= γE

[
k∑
i=1

wi · {Ai is ranked ith out of N}
∣∣∣∣∣ Ai ≥ amin (m)

]
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+ (1− γ) E
[

k∑
i=1

wi · {e∗i (Ai; m) is ranked ith out of N}
∣∣∣∣∣ Ai ≥ amin (m)

]

= γ
k∑
i=1

wi ·
∫ 1

amin(m)
a dFN−i:N (a) + (1− γ)

k∑
i=1

wi ·
∫ 1

amin(m)
e∗ (a) dFN−i:N (a)

The rest follows by Theorem 16 where we solve the general version of seeker’s problem.

D.4 The optimal allocation of prizes in contests with endogenous
participation and unobservable effort that maximizes the best k

participating performers

In this section we solve seeker’s general problem. Assume that the seeker determines the number
of rewards having positive value and the entire distribution of her total budget R among the dif-
ferent rewards for each rank, in order to maximize the expected value of a weighted combination
of the top k ∈ {1, 2, . . . , N − 1} participating solvers (ranked by their equilibrium performance
in relative order), conditional that at least k solvers participate. If less or equal than k solvers
participate (an event that the seeker wishes to happen with sufficiently low probability, if not
with zero probability), then we set seeker’s objective to zero. It is easy to see that Proposition 2
can be extended to show that having a budget

k cp < R < N cp

is an necessary and sufficient condition to guarantee that the event {N ≤ k − 1} ∪ {N = N}
has zero probability. Alternatively, since the number of participating solvers follows Binomial
distribution, we can use Chernoff bounds and show that the positive probability P [N ≤ k − 1]
can be made sufficiently small so that the seeker can ignore it. We focus on weakly monotone
allocations of non-negative rewards and we impose the budget constraint ∑N

j=1Rj ≤ R. That
is, if no solvers participate, the seeker keeps her budget; if one solver participates he exerts zero
effort and gets the top reward R1, and so on and so forth for all other special cases.

Seeker’s problem is given by:

max
R1,...,RN

Π̂
(
(Rj)Nj=1

)
s.t. u (ai, e∗i ; p̃) ≥ cp, for all i that enter (IR)

e∗ = arg max
e≥0

u (a, e; p̃) for all a (IC)

N∑
j=1

Rj ≤ R (Budget constraint)

Rj ≥ Rj+1, j = 1, . . . , N − 1 (Monotonicity)

p̃ = p∗ (SCE)

(D.14)



Appendix D: Proofs of Chapter 1 115

where

Π̂
(

(Rj)Nj=1

)
:= E

[
k∑
i=1

wi

{
γAN−i:N + (1− γ) e∗

(
AN−i:N ; (Rj)Nj=1

)}
· 1{i enters}

(
(Rj)Nj=1

)∣∣∣∣∣ N ≥ k
]

for exogenous weights w1 > w2 > . . . > wk and

ui (ai, e∗i ; p̃) =
N∑
j=1

Rj ·P [x∗i ranked jth out of N ; p̃]− e∗i
ai
− cp

Note that the reward allocation chosen by the seeker determines the participation decision of
the solvers, as well as their effort action, but the abilities of the solvers are not known by the
seeker and we denote them with random variables. The seker
The optimization (D.14) is a combinatorial problem over the number of non-zero rewards to

allocate as well as their size, for all possible combinations that satisfy the constraints above. To
solve it, we first characterize solvers’ best response to a fixed reward allocation chosen by the
seeker. We focus on pure symmetric self-confirming equilibria (SCE). The result follows by the
proofs of Theorem 1 and Theorem 2 and we omit its proof.

Theorem 15 (Self-confirming equilibrium - general case). (a) There exists a unique pure sym-
metric equilibrium characterized by a couple (p∗, amin) ∈ [0, 1]× [a0, 1] that solves

∑N
j=1 (Rj −Rj+1) · FN−j:N−1 (amin (p∗)) = cp

p∗ = 1− F (amin (p∗))

}
(D.15)

such that N ∼Binomial(N, 1− F (amin)) solvers participate in equilibrium according to beliefs
p∗ on the fraction of participants.
(b) There exists γ̃ ∈ [0, 1] that depends on the allocation (Rj)Nj=1 such that for any fixed

contest specialization γ ∈ [γ̃, 1]: e∗ (a; γ) = 0 for all a ∈ [a0, 1]. When γ ∈ [0, γ̃) a solver with
ability a exerts equilibrium effort

e∗
(
a; γ, (Rj)Nj=1

)
=


γ (amin−a)

1−γ +
∑N
j=1 (Rj −Rj+1)

∫ a
amin

x dFN−j:N−1 (x) , a ≥ amin
0, a < amin

(D.16)

It is crucial to note that the allocation of rewards affects the functional form of solvers’ effort,
the lower limit of the integral in (D.16), as well as the participation decision of the solvers.
These correspond to the “effort”, “screening” and “participation” effects respectively. As we
show below, all these three effects combined determine the optimal solution to seeker’s objective
function in (D.14). In addition, the first term of (D.16) is decreasing in ability, whereas the
second term is increasing in ability. Depending on which effects dominates, the equilibrium
effort is in general single-peaked.
To guarantee that at least k solvers participate with non-trivial probability p∗ ∈ (0, 1) and ex-

ert strictly positive effort we assume that the following generalized version of Budget Condition
holds:

max
{ 1
a0
, k · cp

}
< R < N cp, (Generalized Budget Condition)

for k ∈ {1, . . . , N − 1}. If the firm cares about the case k = N , we assume the Budget Condition
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to make our setting non-trivial. This implies that γ̃ = 1, hence all participating solvers exert
strictly positive effort in equilibrium for all contest specializations γ ∈ [0, 1). Trivially, if γ = 1
then solver effort has no impact on his performance rankings and all participating solvers exert
zero effort upon entry.
Armed with solvers’ best response to a given reward allocation chosen by the seeker, we pro-

vide a characterization of the solution to seeker’s combinatorial problem (D.14). The following
Theorem shows that the structure of the optimal allocation has the MW format for innovation
contests with unobservable effort when the seeker cares about the total performance of the par-
ticipants, or for purely ability-based innovation contests and irrespective on the objective of the
seeker. Further, we provide a tight upper bound m∗0 on the optimal number of awards set by
the seeker, due to the endogenous participation actions of the solvers.

Theorem 16 (Top k participating performers - general case). Seeker’s objective is written as

Π̂
(
(Rj)Nj=1

)
= γ

k∑
i=1

wi ·N
∫ 1

amin((Rj)Nj=1)
a {FN−i−1:N (a)− FN−i:N (a)} dF (a)

+ (1− γ)
k∑
i=1

wi ·N
∫ 1

amin((Rj)Nj=1)
e∗
(
a; (Rj)Nj=1

)
{FN−i−1:N (a)− FN−i:N (a)} dF (a)

Define (m∗0, a∗min) ∈ {1, . . . , m} × [a0, 1] as the unique solution of the system

m∗0 = arg max1≤j≤m

{
FN−j:N−1(a∗min)

j

}
R
m∗0
· FN−m∗0:N−1 (a∗min) = cp

 (D.17)

The optimal allocation to (D.14) has at most m∗0 non-zero awards characterized as follows

(
R∗j

)m∗0
j=1

=



 R

m∗0
,
R

m∗0
, . . . ,

R

m∗0︸ ︷︷ ︸
m∗0−equal rewards

, 0, 0, . . . , 0

 , γ = 1, and 1 ≤ k ≤ N

(R, 0, 0, . . . , 0) , γ ∈ [0, 1) , and 1 ≤ k ≤ N − 1

(R, 0, 0, . . . , 0) , γ = 0, and k = NR∗1, R∗2, . . . , R∗m∗︸ ︷︷ ︸
m∗≤m∗0 rewards

, 0, . . . , 0

 , γ ∈ (0, 1) , and k = N

(D.18)

Proof of Theorem 16. From Lemma 1 we have that awarding more than m distinct prizes
induces no solvers to participate. Hence, the optimal number of rewards to set is strictly
less than m. We consider four special cases. In all cases below we assume a strictly positive
participation cost cp > 0 and seeker’s budget satisfies the Generalized Budget Condition.
Case 1 : γ = 1 and k ∈ {1, . . . , N}. Solver’s objective is given by

Π̂
(
(Rj)mj=1

)
=

k−1∑
i=0

wi ·
∫ 1

amin
(
(Rj)mj=1

) a dFN−i:N (a)
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which is maximized at the allocation (Rj)mj=1 that minimizes solvers’ unique participation
threshold amin. Recall that the LHS of the (IR) constraint that defines amin is strictly in-
creasing in amin, and hence it is invertible. To minimize amin we can equivalently maximize
the maximum participation cost that can be supported for a given award allocation, over all
monotone allocations. The latter is the solution to

max
R1,..., Rm

m−1∑
j=1

(Rj −Rj+1) · FN−j:N−1 (amin)

such that Rj ≥ Rj+1, j = 1, . . . ,m− 1
m−1∑
j=0

Rj = R

(D.19)

Note that the budget constraint is binding. Define δj := j · (Rj −Rj+1) for j = 1, . . . , m and
observe that the linear program (D.19) can be written as

max
δ1,..., δm

m∑
j=1

δj ·
FN−j:N−1 (amin)

j

such that δj ≥ 0, j = 1, . . . ,m
m∑
j=1

δj = R

Corollary 1 shows that for a given amin the function g (m) := 1
m ·FN−m:N−1 (amin) is unimodal

and is maximized at a unique m∗0 defined as:

m∗0 := arg max
1≤j≤m

{
FN−j:N−1 (amin)

j

}
The latter definition combined with the (IR) condition (D.15) implies that the optimal pair
(m∗0, a∗min) is the unique solution to the system (D.17) for γ = 1.

Case 2: γ = 0 and k = N . In this case, the seeker cares about the total effort (which equals
performance) of the participating solvers. By Theorem 15 and γ = 0 we have that

e∗
(
a; (Rj)Nj=1

)
=

N∑
j=1

(Rj −Rj+1)
∫ a

a0
x fN−j:N−1 (x) dx

Observe that the term corresponding to j := N is negative, so we have that R∗N = 0. It suffices
to show that at optimality all differences in rewards from the 2nd position till N are zero, hence
R∗j = R∗N = 0 for all j ≥ 2. Assume that R1 − R2 = δR and R2 = (1− δ)R, for δ ∈ [0, 1].
Seeker’s objective becomes

max
δ∈[0, 1]

∫ 1

amin(δ)
e∗ (a; δ) dF (a)

Due to the boundary condition e∗ (amin (δ) ; δ) = 0 we have that

dΠ
dm

(δ) =
∫ 1

amin(δ)

de∗

dδ
(a; δ) dF (a)− ∂amin

∂δ
(δ) · f (amin (δ)) ·

���
���

��:0
e∗ (amin (δ) ; δ)
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which implies that seeker’s problem becomes

max
δ∈[0, 1]

δR

∫ 1

amin

[∫ a

amin

x (fN−1:N−1 (x)− fN−2:N−1 (x)) dx
]
dF (a)

Similar to the proof of Moldovanu and Sela (2001), showing that the integral sign is strictly pos-
itive for all F shows that the optimal value of δ is δ∗ = 1. Indeed, by Lemma 1.6 of Moldovanu
and Sela (2001) we have that fN−1:N−1 (x)− fN−2:N−1 (x) changes sign from negative to pos-
itive at a unique x0 ∈ [a0, 1]. Hence, seeker’s objective Π̂

(
(Rj)Nj=1

)
is maximized at a WTA

allocation for γ = 0 and k = N .
Case 3 : γ ∈ [0, 1) and 1 ≤ k ≤ N − 1. In this case, the seeker cares about the to-

tal performance of the participating solvers. We assume that seeker’s budget satisfies the
Budget Condition. Due to the threshold participation strategy of the solvers and Lemma 8,
being ranked kth highest among the top subset of a population of random size is equal to being
ranked kth highest out of the entire population, if and only if, the top subset has size greater
or equal to k with probability one. Hence, we can equivalently solve seeker’s problem when all
solvers participate. Corollary 2 shows that a WTA allocation is optimal in this case.
Case 4 : γ ∈ (0, 1) and k = N . Arguing similarly to Theorem 3(b) we have that it is not

optimal to allocate more than m∗0 awards since it would hurt both the “effort effect” as well
as the “participation effect”. In particular, the “Case 1” above shows that to maximize the
“participation effect” we should equally spread the budget among the top m∗0 solvers, allocating
zero awards to any lower ranked participating solvers, whereas “Case 2” shows that the “effort
effect” is maximized by allocating all the budget to the top. For intermediate values of γ ∈ (0, 1)
checking all combinations of m ∈ {1, . . . , m∗0} awards rewarded to the top m solvers leads to
the allocation that maximizes Π̂ (·).

Corollary 2 (Top k performers with exogenous participation). Let N be the solver population
size which we allow to be finite or infinite, and assume that all N solvers participate with
certainty. Then, the WTA allocation is optimal for all γ ∈ [0, 1] and 1 ≤ k ≤ N .

Proof of Corollary 2. Fix an arbitrary k ∈ {1, . . . , N} .We have that N solvers participate
w.p.1, if and only if, R ≥ N · cp. When N → +∞, the latter condition is satisfied for finite R,
if and only if, cp = 0. Implying these conditions, Archak and Sundararajan (2009) show that
when WTA is optimal for γ = 0 and 1 ≤ k ≤ N . This also holds for γ ∈ [0, 1] and 1 ≤ k ≤ N

since the observability of effort does not affect seeker’s objective when solver participation is
exogenously guaranteed.
Assume that R ≥ N · cp and N < ∞. From Theorem 16 with amin := a0 and wi = 1 for all

i, seeker’s objective is written as:

Π̂
(
(Rj)Nj=1

)
= γ

k∑
i=1

wi ·N
∫ 1

a0
wi · a {FN−i−1:N (a)− FN−i:N (a)} dF (a)

+ (1− γ)
k∑
i=1

wi ·N
∫ 1

a0
e∗
(
a; (Rj)Nj=1

)
{FN−i−1:N (a)− FN−i:N (a)} dF (a)

Note that only the second term is affected by the reward allocation (Rj)Nj=1. Moldovanu and
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Sela (2001) show that N
∫ 1
a0
e∗
(
a; (Rj)Nj=1

)
dF (a) ≥ 0 is maximized at a WTA allocation that

places all the budget at the top. To show that this also holds for Π̂
(
(Rj)Nj=1

)
it suffices to

show that the optimal value of the second reward R∗2 = 0 (since we focus on weakly monotone
allocations).
Setting γ = 0 into Theorem 15 we have that

e∗
(
a; (Rj)Nj=1

)
=

N∑
j=1

(Rj −Rj+1)
∫ a

a0
x fN−j:N−1 (x) dx

Observe that the term corresponding to j := N is negative, so we have that R∗N = 0. It suffices
to show that all differences in rewards from the 2nd position till N are zero, hence R∗j = R∗N = 0
for all j ≥ 2. Assume that R1 −R2 = δR and R2 = (1− δ)R, for δ ∈ [0, 1].
Fix an arbitrary index i ∈ {1, . . . , k}. Seeker’s objective becomes

max
δ∈[0, 1]

∫ 1

a0
e∗ (a; δ) {FN−i−1:N (a)− FN−i:N (a)} dF (a)

or equivalently

max
δ∈[0, 1]

δR

∫ 1

a0

[∫ a

a0
x (fN−1:N−1 (x)− fN−2:N−1 (x)) dx

]
{FN−i−1:N (a)− FN−i:N (a)} dF (a)

Similar to the proof of Moldovanu and Sela (2001), it suffices to show that the integral sign is
strictly positive for all F .
By Lemma 1.6 of Moldovanu and Sela (2001) we have that fN−1:N−1 (x) − fN−2:N−1 (x)

changes sign from negative to positive at a unique x0 ∈ [a0, 1]. Also, by B.3 we have that the
function

FN−i−1:N (a)− FN−i:N (a) =
(
N − 1
j − 1

)
F (a)N−j (1− F (a))j−1

is strictly increasing in a, for all a ∈ [a0, 1].
Applying Lemma 10 we immediately have that∫ 1

a0

[∫ a

a0
x (fN−1:N−1 (x)− fN−2:N−1 (x)) dx

]
{FN−i−1:N (a)− FN−i:N (a)} dF (a) > 0,

or that a WTA allocation maximizes

N

∫ 1

a0
e∗
(
a; (Rj)Nj=1

)
{FN−i−1:N (a)− FN−i:N (a)} dF (a)

Hence, seeker’s objective Π̂
(
(Rj)Nj=1

)
is maximized at a WTA allocation for all γ ∈ [0, 1] and

1 ≤ k ≤ N .
Corollary 2 generalizes the classic WTA result of Moldovanu and Sela (2001) which was estab-

lished for the seeker objective of maximizing the total sum of the efforts which are observable by
the seeker (k := N and γ := 0), the solver population size is finite (N <∞), and all solvers par-
ticipate with certainty. Further, Corollary 2 shows that the result of Archak and Sundararajan
(2009) holds also for finite population size, unobservable effort and no participation uncertainty.
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AppendixE
Proofs of Chapter 2

E.1 Summary of notation used

Firm:

• k: number of distinct priority classes to form.

• Nj : size of priority class j, where j ∈ {1, . . . , k}. We denote by N := (N1, . . . , Nk) the
partition chosen by the firm and require ∑k

j=1Nj = N .

Agents:

• Nj : random variable representing the ex ante unknown number of participating agents in
priority class j, where j ∈ {1, . . . , k}. The support of Nj is {0, 1, . . . , Nj}.

• N := (N1, . . . , Nk) is the random vector of the ex ante unknown number of participating
agents in each priority class. Similarly, let N := ∑k

j=1Nj be the random variable with
support {0, 1, . . . , N} of the ex ante unknown total number of participating agents.

• n := (n1, . . . , nk) is the realization of N , ex post the participation decision of the strategic
agents. Similarly, let n := ∑k

j=1 nj be the ex post realized total number of participating
agents.

Other parameters:

• λ = λ (N ): (endogenous) mean arrival rate arriving into the system in total. Conditional
that {N = n} agents participate, λ (n) is the mean arrival rate that solves (2.1).

• λj ; ρj , ρ̂j : realized demand rate allocated to class j according to FRFtS (where j ∈
{1, . . . , k}); realized and expected utilization of class j, respectively.

• Λ, V , c: (exogenous) mean customer demand for service, customers’ valuation of service,
and cost per unit of time waiting, respectively.

• Vf , w: (exogenous) revenue per sale for the firm, and (exogenous) hourly wage paid to
agents when utilized respectively.

Konstantinos I. Stouras, Incentive Design of On-Demand Marketplaces
Ph.D. Thesis, INSEAD ©2017

mailto:konstantinos.stouras@insead.edu
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• N : (exogenous) size of agents’ population.

• cp: (exogenous) agents’ participation cost.

• F (·), f (·): (exogenous) CDF and PDF of agents’ ability distribution, which is assumed
common knowledge and strictly increasing in its support [0, 1]. We let Ai denote the
ability of an agent i which is a random variable for the firm, whose realization {Ai = ai}
is privately known to agent i.

• β̃: (exogenous) agents’ ex ante distribution of the (symmetric) participation actions of
the others. In particular, the agents ex ante believe that their peers participate with
(symmetric) probability p̃.

• β∗: (endogenous) agents’ equilibrium distribution of the participation actions of the oth-
ers. In equilibrium, the agents participate with (symmetric) probability p∗.

E.2 The M/M/N model with Ranked Servers

In this section, we analyze the queuing dynamics of our setting described in §2.3. Following the
sequence of events in §2.3, first {N = n} servers enter the system (Step 2) and then congestion-
sensitive demand λ (n) is realized (Step 3), where λ (n) is the unique solution to (2.1) and it
scales appropriately so that λ (n) < n, for every realization n ∈ {1, . . . , N} of the number of
participating agents with λ (0) = 0. Since demand arrivals are Poisson and service times are
exponentially distributed, we refer to this setting as the M/M/N model with ranked servers in
k priority classes.
First, we examine the M/M/N model without server priorities. Conditional that {N = n}

servers enter the system, it is known from the classic M/M/n model with µ = 1 that, if C (t)
denotes the number of customers in the system at time t, the following steady state distribution
exists

π̂ (s; n) := lim
t→∞

P [C (t) = s] =


1
s!λ (n)s π̂ (0; n) , 0 ≤ s ≤ n
1
n!λ (n)n

(
λ(n)
n

)s−n
π̂ (0; n) , s ≥ n

(E.1)

where π̂ (0; n) :=
(∑n−1

r=0
λr

r! + λn

n! (1−λ
n)

)−1
. Next, we define a relevant performance metric for

the expected amount of time an individual agent is busy in an M/M/N model, averaged over
the number of participating agents.

Definition 2 (Expected utilization). Let N be a non-negative discrete random variable. The
expected long-run fraction of the time that a participating agent is busy in the M/M/N model
without server priorities is

ρ̂ := EN

[N−1∑
s=1

s

N
π̂ (s; N ) +

∞∑
s=N

π̂ (s; N )
∣∣∣∣∣ N ≥ 1

]
(E.2)

We refer to ρ̂ as the expected utilization of a participating agent.
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The number of participating servers is only known ex post agents’ participation decision.
Hence, the above definition captures the a priori utilization value of an individual agent when
no priority classes are formed. The above definition makes no assumption on the distribution
of the number of participating agents. As we prove in §2.4, the Binomial distribution arises in
equilibrium by the strategic participation choices of the agents. By conditioning on the number
of participating agents and using (E.1), we show next that agents’ expected utilization (E.2)
under congestion-sensitive demand increases in participation and can be simplified as follows.

Lemma 11. Conditional on {N = n} for n ∈ {1, . . . , N}, let λ (n) be the unique solution to
(2.1) with λ (n) < n and λ (0) = 0.
(a) The expected utilization of a participating agent in the M/M/N model is equal to

ρ̂ = EN

[
λ (N )
N

∣∣∣∣ N ≥ 1
]

(b) If N ∼ Bin (N, p) then the expected utilization ρ̂ is strictly increasing in agents’ participation
probability p.

Proof of Lemma 11. Fix a realization n ∈ {0, . . . , N} of the number of participating
agents N . Recall that congestion-sensitive demand with customer expected utility (2.1) implies
that the equilibrium demand rate scales appropriately so that λ (n) < n, and λ (0) = 0. If
n = 0, then ρ̂ := 0 by Definition 2. Using the steady state distribution (E.1) of the M/M/n we
get

n∑
s=1

s

n
π̂ (s; n) +

∞∑
s=n+1

π̂ (s; n) = π̂ (0; n) ·
{

1
n
·
n∑
s=1

λ (n)s

(s− 1)! + λ (n)n

n! ·
∞∑

s=n+1

(
λ (n)
n

)s−n}

= π̂ (0; n) ·
{

1
n
·
n−1∑
r=0

λ (n)r

r! + λ (n)n

n! ·
∞∑
r=1

(
λ (n)
n

)r}
(E.3)

= π̂ (0; n) ·
{

1
n
·
n−1∑
r=0

λ (n)r

r! + λ (n)n

n! ·
(

λ(n)
n

1− λ(n)
n

)}

= λ (n)
n

,

The last step follows by the definition of π̂ (0; n). Conditioning on the number of participating
agents we have

ρ̂ = EN

[
n−1∑
s=1

s

n
π̂ (s; n) +

∞∑
s=n

π̂ (s; n)
∣∣∣∣∣ N = n ≥ 1

]
=

N∑
n=1

λ (n)
n
·P [N = n]

= EN

[
λ (N )
N

∣∣∣∣ N ≥ 1
]

Further, Lemma 9(a) of Taylor (2016) shows that the ratio λ(n)
n strictly increases in n, for

each n ∈ {1, . . . , N}. Then, a coupling argument implies that if N1 ∼ Bin (N, p1) and N2 ∼
Bin (N, p2) with p1 < p2, then N1 < N2 almost surely (a.s.). Hence,

EN1

[
λ (N1)
N1

∣∣∣∣ N1 ≥ 1
]
< EN2

[
λ (N2)
N2

∣∣∣∣ N2 ≥ 1
]
,
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i.e. the expected utilization ρ̂ is strictly increasing in agents’ participation probability p.
Next, we analyze the M/M/N model with server priorities focusing on the FRFtS priority

routing policy that allocates an incoming service request to the highest ranked, non-busy par-
ticipating agent (if such agent does not exist, arriving customers wait in a single queue (pooled
system) that is formed). In case there are priority classes with more than one agent in each of
them, the firm routes an incoming service request to the highest priority class that has some
non-busy participating agents, by picking one of them uniformly at random1. Similarly, if all
participating agents are busy, the customers wait in the queue to be served.
To build intuition, assume that (in Step 1) the firm decided to split her total population of N

agents into two priority classes with N1 primary and N2 secondary priority agents (the lower the
index, the higher the priority class) such that N1 +N2 = N . Fix an arbitrary n ∈ {0, 1, . . . , N}
and suppose that at the beginning of the period, {Nj = nj} agents of priority class j participate
and do not exit the system for the duration of the period, where Nj has support {0, . . . , Nj}
for j = 1, 2, and such that n1 + n2 = n. Denote by C1 (t) and C2 (t) the number of customers
occupying the primary and secondary agents respectively at time t such that C (t) = C1 (t)+C2 (t)
is the total number of customers in the system. By noting that λ (n) < n, we can define

π (i, j; n) :=

limt→∞P [C1 (t) = i, C2 (t) = j] , 0 ≤ i ≤ n1, 0 ≤ j ≤ n2

limt→∞P [C (t) = i+ j] , i+ j ≥ n
(E.4)

as the joint steady state probability distribution function of this priority system (see Figure E.1
for an illustration of the underlying Markov Chain). We note that the stochastic processes
{C1 (t)}t≥0, {C2 (t)}t≥0 are dependent, as the low priority servers will only be used once all the
top priority servers are occupied. To the best of our knowledge, neither the marginal steady
state distributions of {C1 (t)}t≥0 and {C2 (t)}t≥0 nor their joint steady state distribution are
known. However, the steady state evolution of the (total) number of customers into the system
{C1 (t) + C2 (t)}t≥0 is given by the classical formulas of the M/M/n model.
In order to find the expected utilizations ρ̂1 and ρ̂2 of the agents ranked in the primary and

secondary priority class respectively, we proceed similarly to the case without priorities. In
particular, we first characterize the steady state distribution π (i, j; n) for every realizations
n1, n2 with n1 + n2 = n, and then use it to calculate the expected long-run fraction of the
time that a participating agent in each class is busy. In case there are more than two classes,
we can compute the expected utilization of each priority class by an appropriate two priority
classes re-partitioning. The following result provides a closed-form expression for the expected
utilizations of each priority class for any number of priority classes formed.

Theorem 17 (Expected utilization of each priority class). (a) Assume that the firm forms
two priority classes with N1 ∈ {1, 2, . . . , N − 1} primary priority agents and N2 = N − N1

secondary priority agents. Conditional that n1, n2 agents participate in each class with n =
1This is indeed the approach currently used in practice by work-from-home contact centers, but we note that
this is not entirely without loss of generality. It is outside the scope of this dissertation to investigate state
dependent routing policies that could possibly allocate demand with positive probability to already busy
participating agents depending on the queue length in front of them, and on the overall state of the system.
We leave such cases to future research.
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Figure E.1 Markov Chain of a stable M/M/n model with ranked servers in two priority
classes given that n1 primary and n2 = n − n1 secondary priority servers have
entered the system and serve demand at a fixed service rate µ > 0.

n1 + n2 ∈ {1, 2, . . . , N} and congestion-sensitive demand rate λ = λ (n) with λ (n) < n let

ρ1 (n1, n2; λ) := λ

n1
(1−B (n1, λ))

n∑
i=0

π̂ (i; n) +
∞∑

k=n+1
π̂ (i; n) (E.5)

ρ2 (n1, n2; λ) := λ− n1 · ρ1 (n1, n2; λ)
n2

(E.6)

where π̂ is the steady state distribution (E.1) and B (n1, λ) is the Erlang-B loss formula of an
M/M/n1/n1 system with mean traffic λ. Then, the expected utilization of the agents in the
primary and secondary priority classes is given by

ρ̂1 = EN [ρ1 (N1, N2; λ (N1 +N2))] (E.7)

ρ̂2 = EN [ρ2 (N1, N2; λ (N1 +N2))] (E.8)

(b) Consider a partition N = (N1, . . . , Nk) with k > 2 priority classes and let N =
(N1, . . . ,Nk) be the ex ante vector of the number of participating agents in each class. Then,
the expected utilization of class j out of k is given by ρ̂j: k = EN

[
λj: k(N ;λ)
Nj

∣∣∣ Nj ≥ 1
]
, where

λj: k (N ; λ) :=


N1 · ρ1

(
N1,
∑k

i=2
Ni; λ

)
, j = 1(∑j

i=1
Ni

)
· ρ1
(∑j

i=1
Ni,
∑k

i=j+1
Ni; λ

)
−
(∑j−1

i=1
Ni

)
· ρ1
(∑j−1

i=1
Ni,
∑k

i=j
Ni; λ

)
, j = 2, . . . , k − 1

λ−
∑k−1

i=1
Ni · ρ1

(∑k−1
i=1
Ni, Nk; λ

)
, j = k

Proof of Theorem 17. (a) Assume that the firm forms two priority classes with N1 primary
priority agents where N1 ∈ {1, 2, . . . , N − 1} and N2 = N − N1 secondary priority agents.
Conditional that n1, n2 agents participate in each class with n = n1 + n2 ∈ {1, 2, . . . , N} and
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congestion-sensitive demand rate λ = λ (n) with λ (n) < n we have the following. (Note that if
one class has no participating agents then its (realized) utilization is zero by definition, and the
other class has n agents so its (realized) utilization is λ

n from the traditionalM/M/n model.) By
definition the utilization of the primary and secondary priority classes are the long-run average
fraction of time an agent of each class is occupied respectively:

ρ1 (n1, n2; λ) :=
n2∑
j=0

n1−1∑
i=1

i

n1
π (i, j; n1 + n2) +

∞∑
k=n

π̂ (k; n) (E.9)

ρ2 (n1, n2; λ) :=
n1∑
i=0

n2−1∑
j=1

j

n2
π (i, j; n1 + n2) +

∞∑
k=n

π̂ (k; n) (E.10)

where π and π̂ are the steady state distributions (E.4) and (E.1). Observe that (E.3) in the
proof of Lemma 11 implies that ρ1 (n1, 0; λ) = λ

n1
and ρ1 (0, n2; λ) = λ

n2
.

Reading Figure E.1 row by row, the following flow-balance equations for the stationary dis-
tribution π can be derived when n1, n2 ≥ 1:

(λ+ j)π (0, j; n) = π (1, j; n) + (j + 1)π (0, j + 1; n) , 0 ≤ j ≤ n2 − 1

(λ+ n1)π (0, n2; n) = π (1, n2; n)

(λ+ i+ j)π (i, j; n) = λπ (i− 1, j; n) + (i+ 1)π (i+ 1, j; n) + (j + 1)π (i, j + 1; n) , 1 ≤ i ≤ n1 − 1, (E.11)

0 ≤ j ≤ n2 − 1

(λ+ i+ n2)π (i, n2; n) = λπ (i− 1, n2; n) + (i+ 1)π (i+ 1, n2; n) , 1 ≤ i ≤ n1 − 1

(λ+ n1)π (n1, 0; n) = λπ (n1 − 1, 0; n) + π (n1, 1; n)

(λ+ n1 + j)π (n1, j; n) = λ [π (n1 − 1, j; n) + π (n1, j − 1; n)] + (j + 1)π (n1, j + 1; n) , 1 ≤ j ≤ n2 − 1

(λ+ n)π (n1, n2; n) = λ [π (n1 − 1, n2; n) + π (n1, n2 − 1; n)] + n π̂ (n+ 1; n)

π (0, 0; n) ≡ π̂ (0; n) =

(
n−1∑
r=0

λr

r!
+

λn

n!
(
1− λ

n

))−1

π (i, j; n) ≡ π̂ (i+ j; n) =
nn
(
λ
n

)i+j
n!

π̂ (0; n) n1 + n2 ≤ i+ j <∞
∞∑
i=0

∞∑
j=0

π (i, j; n) = 1

Define the function p (i) := ∑n2
j=0 π (i, j; n1 + n2) for each i = 0, 1, . . . , n1 and observe that

ρ1 (n1, n2; λ) = ∑n1−1
i=1

i
n1
p (i) + ∑∞

k=n π̂ (k; n). Then, p (i) can be viewed as the steady state
distribution of the Markov Chain illustrated in Figure E.2.

The flow-balance equations are

λ · p (0) = p (1)
(λ+ i) · p (i) = λ · p (i− 1) + (i+ 1) · p (i+ 1) , i = 1, . . . , n1 − 1

}

and imply that p (i) = λi

i! · p (0), i = 1, . . . , n1. The key to find p (0) without referring back
to (E.11) is to observe that the total system operates as the M/M/n, hence ∑n1

i=0 p (i) =
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Figure E.2 (A) Markov Chain for the evolution of p (i) (Theorem 17a). (B) Reduction to
two priority classes by re-partitioning when there k ≥ 3 priority classes.

∑n1+n2
i=0 π̂ (i; n). That is, p (0) +∑n1

i=1
λi

i! · p (0) = ∑n1+n2
i=0 π̂ (i; n), or

p (0) =
∑n1+n2
i=0 π̂ (i; n)∑n1

i=0
λi

i!

Then, by the definition of the Erlang-B formula B (n1, λ) :=
λn1
n1!∑n1
i=0

λi

i!
we get

ρ1 (n1, n2; λ) =
n1∑
i=1

i

n1
p (i) +

∞∑
k=n+1

π̂ (k; n)

=
n1∑
i=1

i

n1
· λ

i

i! ·
{∑n1+n2

i=0 π̂ (i; n)∑n1
i=0

λi

i!

}
+

∞∑
k=n+1

π̂ (k; n)

= λ

n1
· (1−B (n1, λ))

n1+n2∑
i=0

π̂ (i; n) +
∞∑

k=n+1
π̂ (k; n)

Note that π̂ is known from theM/M/n model. Knowing ρ1 (n1, n2; λ) we can find ρ2 (n1, n2; λ)
by the conservation of the effective traffic rate in each priority class as follows. Let λ1 =
n1 ·ρ1 (n1, n2; λ) and λ2 = n2 ·ρ2 (n1, n2; λ) be the effective traffic rates in the primary and sec-
ondary priority classes respectively. Then, λ1+λ2 = λ, or n1 ·ρ1 (n1, n2; λ)+n2 ·ρ2 (n1, n2; λ) =
λ, which implies

ρ2 (n1, n2; λ) = λ− n1 · ρ1 (n1, n2; λ)
n2

, n2 ≥ 1

Then, for a congestion-sensitive demand with customer expected utility (2.1), the expected
utilization of the agents in the primary and secondary priority classes are given by

ρ̂1 (N1, N2; λ) = EN [ρ1 (N1, N2; λ (N1 +N2))]

ρ̂2 (N1, N2; λ) = EN [ρ2 (N1, N2; λ (N1 +N2))]

(b) Suppose that there are k ≥ 3 priority classes and fix a priority class i, for i = 2, 3, . . . , k−1.
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Observe that traffic is sent to class i if and only if the agents of higher priority are all busy
(see also Figure E.2B). We show the statement by conditioning on the realized number of
participating agents in each priority class to find the realized values of utilizations for each
class. Condition that n1, . . . , nk agents have participated in each class and let ∑k

i=1 ni = n.
The congestion-sensitive, arriving traffic into the system is then λ = λ (n). We re-partition the
initial system into class A (primary) with the top nA := ∑i−1

j=1 nj agents and class B (secondary)
with the remaining nB := ∑k

j=i nj agents (see also Figure E.2B). Applying part (a) we have
that the utilization of class A into this new two priority classes system is ρ1 (nA, nB; λ) and
the effective traffic rate into class A is λA = nA · ρ1 (nA, nB; λ). Re-partition again the initial
system into a new class A′ (primary) with the top nA′ := nA + nj agents and a new class
B′ (secondary) with the remaining nB′ := ∑k

j=i+1 nj agents (see also Figure E.2B). Applying
part (a) we have that the utilization of class A′ into this new two priority classes system is
ρ1 (nA′ , nB′ ; λ) and the effective traffic rate into class A is λA′ = nA′ ·ρ1 (nA′ , nB′ ; λ). We then
have that the effective arrival rate into the initial class j is equal to λj: k := λA′−λA. We define
λ1: k := n1 ·ρ1

(
n1,

∑k
j=2 nj ; λ

)
and λk: k := λ−

∑k−1
j=1 nj ·ρ1

(∑k−1
j=1 nj , nk; λ

)
, so that λ1: k = λ.

Then, the utilization of class j is equal to ρj: k = λj: k
nj

where

λj: k :=


n1 · ρ1

(
n1,
∑k

j=2 nj ; λ
)
, i = 1(∑i

j=1 nj

)
· ρ1

(∑i

j=1 nj ,
∑k

j=i+1 nj ; λ
)
−
(∑i−1

j=1 nj

)
· ρ1

(∑i−1
j=1 nj ,

∑k

j=i nj ; λ
)
, i = 2, . . . , k − 1

λ−
∑k−1

j=1 nj · ρ1

(∑k−1
j=1 nj , nk; λ

)
, i = k

The statement follows by taking the expectation over the vector N = (N1, . . . ,Nk) of the
number of participating agents in each priority class.

The simplified expressions provided in Theorem 17(a) can be used to find the utilizations of
each priority class of an M/M/n system with n servers ranked in k priority classes, for each
k ∈ {2, . . . , n}. We show that the expression for the utilization of the primary priority class
(E.5) for n1 := n reduces to the known utilization expression λ

n of the M/M/n system without
priorities (i.e. k := 1). For an intuition for k ≥ 3 classes, suppose that the firm has split its
population into a 3-partition with N1, N2 and N3 = N −N1 −N2 agents respectively. Assume
further that nA, nB, nC := n− nA − nB agents have participated in each of them respectively.
To find the utilization of the top priority class A composed of nA agents, we split the system
into two new priority classes: the top nA (primary) and the rest nB + nC (secondary) agents.
Using Theorem 17(a) we calculate the utilization of the class A and its effective arrival rate λA.
Next, we re-partition the system into the top nA + nB (primary) and the rest nC (secondary)
agents. Using Theorem 17(a) we can find the utilization of the new top priority class and its
effective arrival rate λ′A. By the conservation of traffic, the effective arrival rate into class B
is the difference λ′A − λA. A similar procedure outlined in Theorem 17(b) gives the utilization
and effective arrival rate of class C as well.

Theorem 17 makes no assumption on the distribution of the number of participating agents.
In the special case where only a fraction of the top ranked agents participate according to a
Binomial distribution, an analog of Lemma 11(b) holds for every priority class. Intuitively,
as more agents are expected to participate, the incoming traffic to each priority class and the
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Figure E.3 Consider a partition of N = 12 agents into three priority classes with capacity of
N1 = 3, N2 = 7 and N3 = 2 agents, respectively. Assume that V = 10, c = 2 and
endogenous demand λ that solves (2.1). All else equal, the expected utilizations
of all priority classes increase in agents’ participation probability, when only a
fraction of the top ranked agents participate according to a Binomial distribution.

number of agents of each class stochastically increase at a rate such that the utilization of each
priority class stochastically increases as well. Hence, the expected utilization of each priority
class increases in agents’ participation probability. Figure E.3 summarizes this insight. Indeed,
as we show in §2.4 such a Binomial distribution arises in equilibrium and characterizes the
voluntary participation strategy of the work-from-home agents.

E.3 Proofs

Proof of Lemma 3. We focus on symmetric pure strategies. If the firm is disregarding any
priority classes (i.e. k := 1), it allocates equal amount of traffic to any agent who participates,
irrespective of his ability rank-order. That is, the expected utility of an agent with ability a is
u (a; p̃) = w·λ(N)

N < cp, due to assumption (2.4). Hence, no agent finds it rational to participate,
i.e. agents’ participation probability satisfies p∗ = 0.

Proof of Theorem 6. (a) and (b) Consider a population of N agents and suppose that
the firm has decided on a relative ranking scheme of k (k = 2, . . . , N) ranks each with Nj

(j = 1, . . . , k) agents so that ∑k
j=1Nj = N . Incoming demand is then allocated according to

FRFtS routing among the k priority classes formed, for any number of participating agents
from each rank.
In order to make a rational participation decision, agent i (i = 1, . . . , N) forms beliefs which

are conjectures (in the form of a distribution) about the equilibrium participation actions of
the others. We are interested in examining whether a symmetric pure equilibrium exists under
symmetric and consistent beliefs, while excluding correlated beliefs. Suppose that based on his
beliefs agent i conjectures that each other agent z 6= i participates with probability p̃z. Focusing
on symmetric equilibria and since agent i does not know the ability of the others, we have p̃z = p̃

for all z 6= i, i.e. p̃z does not depend on agent z’s ability (type) az.
Taking expectation over the realized number of participating agents of any rank, the expected

utilization of a participating agent ranked in the jth priority class is

ρ̂j (p̃) =
∑

0≤n1≤N1

· · ·
∑

0≤nk≤Nk

(
N∑k
j=1 nj

)
· p̃
∑k

j=1 nj · (1− p̃)N−
∑k

j=1 nj · λj: k (n; λ)
nj

, (E.12)
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where λj: k (n; λ) is the effective arrival rate to priority class j given by Theorem 17(b), and
n = (n1, . . . , nk). Note that the above expression does not depend on the ability of any agent.
Also, the incoming traffic rate λ in (E.12) is congestion-sensitive so it depends on the realized
total number of participating agents n = ∑k

j=1 nj and solves (2.1) as described in §2.3.
Without loss of generality, we express the k priority classes resulting in k distinct expected

utilizations as N expected utilizations with some of them to be identical. The expected utility
of agent i who has ability a and conjectures that all others participate w.p. p̃ is

u (a; p̃) =
N∑
j=1

w ρ̂j (p̃) ·P [a is ranked jth out of N ]

=
N∑
j=1

ρ̂j (p̃) · {FN−j:N−1 (a)− FN−j+1:N−1 (a)}

=
N∑
j=1

w (ρ̂j (p̃)− ρ̂j+1 (p̃)) · FN−j:N−1 (a) ,

(E.13)

where we define ρ̂N+1 := 0. Note that there are only k distinct values of expected utilizations
ρ̂j in (E.13); all agents ranked in the same priority class are equally utilized. We also have
that u (·; p̃) is continuous and strictly increasing, since F (·) is strictly increasing on [0, 1] (by
assumption) which implies that the order-statistics distribution is also strictly increasing.
Let amin be the solution (if it exists) to the equation u (a; p̃) = cp. If u (a; p̃) > cp for

all a ∈ [0, 1], we set amin := 0; if u (a; p̃) < cp for all a ∈ [0, 1], we set amin := 1. The strict
monotonicity of the expected utility implies that if an agent with ability a participates, all other
agents with abilities a′ ≥ a participate as well. Due to symmetry there is a unique (global)
participation threshold amin = amin (ρ̂; p̃) which is the same across all agents. In the following
three steps we show that the agents have a unique self-confirming equilibrium belief defined as
p̃ = 1− F (amin).
Step 1 : If agents participate according to a threshold strategy with a probability p̃, the

expected utilization ρ̂j (p̃) of every priority class j strictly increases in p̃. The threshold partic-
ipation strategy of the agents imply that the participating agents fill up a fraction of the top
positions (without gaps). From Lemma 11 we know that the expected utilization of a system
without priorities (or the expected number of participating agents under a threshold strategy)
strictly increases in p̃. Hence, as p̃ increases, the expected utilization ρ̂j (p̃) of every priority
class j strictly increase as well.
Step 2 : The unique participation threshold amin = amin (ρ̂; p̃) is strictly decreasing in the

belief p̃. Indeed, an agent with ability a finds it rational to participate in the service contest
w.p. p̃ iff his expected utility u (a; p̃) of participating w.p. p̃ and being placed at any of the
available rankings when competing with N − 1 other agents covers his participation cost cp:

N∑
j=1

w ρ̂j (p̃) ·
{(

N − 1
N − j

)
p̃N−j (1− p̃)j−1

}
=

N∑
j=1

w ρ̂j (1− p̃) ·
{(

N − 1
j − 1

)
p̃j−1 (1− p̃)N−j

}

> cp

The equation follows by the pigeonhole principle and the terms in brackets are the PDF of
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the Binomial (N − 1, p̃) distribution. Since ρ̂j (1− p̃) strictly decreases in p̃ for all rankings
j = 1, . . . , N , due to stochastic dominance we have that u (a; p̃) strictly decreases in p̃ (or
∂u
∂p̃ (amin, p̃) < 0). Further, due to the strict monotonicity of agents’ expected utility in ability,
we have that ∂u

∂amin
(amin, p̃) > 0. Assuming differentiability the Envelope Theorem

du

dp̃
(a, p̃)

∣∣∣∣
a=amin

= ∂u

∂amin
(amin (p̃) , p̃)︸ ︷︷ ︸
>0

·∂amin
∂p̃

(p̃) + ∂u

∂p̃
(amin (p̃) , p̃)︸ ︷︷ ︸

<0

= 0

implies that ∂amin
∂p̃ (p̃) must be positive.

Step 3 : There exists a unique solution p̃∗ ∈ [0, 1] to the equation p̃ = 1 − F (amin (p̃)).
Indeed, since F is assumed continuous and strictly increasing in ability, the function k (p̃) :=
1−F (amin (p̃))− p̃ is continuous and strictly decreasing in p̃ ∈ [0, 1]. If p̃ = 0, then every agent
who enters will cover his participation cost with positive probability and hence amin (0) > 0
and k (0) = 1 − F (amin (0)) > 0. If p̃ = 1, then this can not be a SCE since in that case
the condition (2.4) implies that every agent who enters does not cover his participation cost.
So, the decision to participate is not rational. Hence, if p̃ = 1, we have amin (1) < 1 and
k (1) = −F (amin (1)) < 0. By the Intermediate Value Theorem, a unique p̃∗ must exist such
that k (p̃∗) = 0.

Proof of Theorem 7. Suppose that the agents form an ex ante belief p̃ on the ex post partic-
ipation probability p∗ of the others. At the unique SCE shown in Theorem 6 we require p̃ = p∗.
Hence, the number of participating agents in equilibrium: N ∗ = ∑N

i=1 1{agent i participates}
is a sum of independent Bernoulli trials with success probability p∗. By definition, we have that
N ∗ follows the Binomial distribution with parameters (N, p∗).

Suppose that the equilibrium number of participating agents N ∗ ∼ Binomial (N, pN ), where
pN := 1 − F

(
aNmin

)
denotes the participation probability chosen by the agents in equilibrium

given a population of size N . Define m := max
{
n ∈ N : wΛ

n ≥ cp
}

= max
{

1,
⌈
wΛ
cp

⌉
− 1

}
, and

note that m is an exogenously fixed constant and does not depend on agents’ population size
N . By its definition m represents an endogenously arising cap on the number of top ranked
agents that the firm can route a non-zero fraction of the available demand (if more than m

agents participate they should not be utilized). That is, m represents a form of a “toll” that the
firm should set to account for the strategic behavior of her agents when the population size is
large (see also Gurvich et al. (2015) who show in a similar self-scheduling setting that imposing
a cap on the agents who can are allowed to enter can be optimal). Then, for each k ≥ m we
have that no agent participates since their expected utility wλ (N)−kNcp < wΛN −kNcp < 0.
Hence, the expected number of participating agents in SCE N · pN can not exceed m. That is,
pN = O

(
1
N

)
and limN→∞ pN = 0 (or equivalently limN→∞ a

N
min = 1).

(Existence) Since pN = O
(

1
N

)
, there exists a constant n∞ > 0 which is independent of N

such that limN→∞N · pN = n∞. Hence, the Poisson Limit Theorem can be applied and implies
the convergence of the Binomial (N, pN ) to a Poisson distribution with parameter n∞. We next
show how to determine the value of the limit n∞.
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Another application of the Poisson Limit Theorem implies that

lim
N→∞

(
N − 1
j − 1

)
pj−1
N (1− pN )N−j = e−n∞

(n∞)j−1

(j − 1)!

Observe that scaling the nominal rate to Λ · N and agents’ service rate to N stochastically
decreases the realized utilizations of each priority class. Then, an asymptotic version of the
(IR) constraint (2.5) gives that n∞ is the solution of

m∑
j=1

wρ̂Poissonj (n∞) · e−n∞ (n∞)j−1

(j − 1)! = cp, (E.14)

where ρ̂Poissonj (n∞) denotes here the expected utilization of a class j over the number of partic-
ipating agents who follow Poisson (n∞), for j ≥ 1.

(Uniqueness) For each z ∈ [0, m], h (z) = ∑∞
j=0wρ̂

Poisson
j (z) e−z zj−1

(j−1)! is a continuous and
strictly decreasing function of z defined on the interval [0, m]. This implies that h (·) has a
continuous inverse.

Lemma 12. For each 1 ≤ j < k ≤ N the difference FN−j:N−1(a)
j − FN−k:N−1(a)

k is single
crossing zero from positive to negative. Hence, there is a unique j∗ = j∗ (a, N) such that
j∗ = arg max1≤j≤k

{
FN−j:N−1(a)

j

}
for each a ∈ [0, 1].

Proof of Lemma 12. Set j := N − s, s = 0, . . . , N − 1 which counts the ranking positions
in reverse order from the lowest to the highest one. Due to stochastic dominance of order
statistics it suffices to show the statement for two consecutive positions: ∆ = ∆ (a) = Fj:N−1(a)

N−j −
Fj+1:N−1(a)
N−j−1 , ∀a ∈ [0, 1]. Using the integral representation (B.1) we have the expression:

∆ (a) = N

(N − j) (N − j − 1)

(
N − 2
j

)∫ F (a)

0
xj−1 (1− x)N−2−j {j −Nx} dx

Note that the function Ĝ (x) := j −Nx is continuous and ϕ (x) := xj−1 (1− x)N−2−j is an in-
tegrable function that does not change sign on the interval (0, F (a)). From the First Mean Value
Theorem for integration there exists x̌ in [0, F (a)] such that

∫ F (a)
0 xj−1 (1− x)N−2−j {j −Nx} dx=

(j −N x̌) ·
∫ F (a)

0 xj−1 (1− x)N−2−j dx. Now, the sign [∆] is determined by the sign [j −N x̌].
Hence, there is a unique j∗ = j∗ (a, N) such that sign [∆] is negative for j < j∗, zero at j∗

and positive for j > j∗. For any k, k ∈ {2, . . . , N − 1} the latter implies that FN−k−1:N−1(a)
k+1 −

FN−k:N−1(a)
k is first increasing and then decreasing.

Proof of Theorem 8. The unique threshold participation strategy of the agents implies
that a number of agents ranked in the top positions would participate in equilibrium. We also
have that the expected utilization of each priority class strictly increases in agents’ equilibrium
participation probability. Further, agents’ participation threshold is global, i.e. it does not
depend on the ability of each agent. Hence, firm’s problem (2.7) is equivalent to finding the
priority classes partition (in terms of number of distinct expected utilization values) that maxi-
mizes agents’ equilibrium participation probability p (or equivalently finding the partition that
minimizes agents’ equilibrium participation threshold amin = amin (ρ̂)), subject to the rest of
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the constraints.
We define the normalized expected utilization differentials

δ̂j := j · (ρ̂j − ρ̂j+1) , j = 1, . . . , N

and express firm’s problem using such differences in expected utilizations between classes. Ob-
serve that the monotonicity constraints in (2.7) take the form of the non-negativity constraints
δ̂j ≥ 0, j = 1, . . . , N . Taking expectation wrt the number of participating agents N the budget
constraint (2.7) can be written as ∑N

j=1 δ̂j = λ. Then, the deltas chosen by the firm determine
agents’ participation threshold through the equation

N∑
j=1

wδ̂j

{
FN−j:N−1 (amin)

j

}
= cp (E.15)

The terms in brackets are the “weights”, which are unimodal wrt j for all amin ∈ [0, 1] as shown
in Lemma 12. Maximizing the LHS of (E.15) gives the highest participation cost that can be
supported by a given demand allocation δ̂. That is, to find the minimum participation threshold
over any demand allocation δ̂, one has to set the expected utilization difference δ̂j∗ equal to its
maximum value for the index j∗ with the largest coefficient multiplying δ̂j∗ in (E.15), making
all the rest δ̂j ’s equal to zero. That is, it is optimal to form two priority classes with

N∗1 := arg max
1≤j≤N

{
FN−j:N−1 (amin)

j

}
top priority agents equally utilized and offer a strictly lower utilization to N∗2 := N −N∗1 lower
priority agents according to FRFtS routing (see Theorem 17). FRFtS routing implies that the
firm is routing demand only to participating agents so that all participating agents receive a
positive utilization, and any non-participating agents are not utilized. Hence, we have

ρ̂1 · FN−N∗1 :N−1 (amin) + ρ̂2 ·
{

1− FN−N∗1 :N−1 (amin)
}

= cp
w

The value of amin that solves the above equation determines the maximum participation prob-
ability p∗ = 1 − F (amin) that can be supported for a given incoming demand rate and the
rest exogenous parameters of the system. That is, for available demand λ and participa-
tion/wage ratio cp

w , the firm can at most induce a number of participating agents distributed as
N ∼ Binomial (N, p∗).

Proof of Theorem 9. (a) Theorem 6 implies that the ability threshold amin is increasing
in agents’ participation cost cp, i.e. for each ĉp < cp we will have that âmin (ĉp) < amin (cp).
To show that N∗1 := arg max1≤j≤N

{
FN−j:N−1(amin)

j

}
is (weakly) decreasing in cp, it suffices

to show that N∗1 is (weakly) decreasing in amin. Lemma 12 shows that for a given amin,
the weights Aj (amin) = FN−j:N (amin)

j have a unique maximum wrt j. Further, the func-
tion f̃ (amin) := max1≤j≤N Aj (amin) is increasing in amin. Hence, arg max1≤j≤N Aj (âmin) ≥
arg max1≤j≤N Aj (amin), which implies that N∗1 (âmin) ≥ N∗1 (amin).

(b) We first prove that N∗1 = N∗1 (N) is weakly increasing in N . We have shown that for a
fixed amin, N∗1 (cp, amin) is (weakly) decreasing in cp. We further have that all else equal, cp
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increases in amin. It suffices to show that amin is weakly increasing in agents’ population N .
Indeed, the stochastic dominance of the order statistics distribution Fi+1:N+1 (x) ≤ Fi:N (x) for
all N , i ∈ {1, . . . , N − 1}, and x in its domain imply that for a fixed N∗1 and cp, and for each
N̂ < N we will have that âmin

(
N̂
)
≤ amin (N). Hence, N∗1 = N∗1 (N) is weakly increasing in

N .

(c) Arguing similarly to Theorem 8 and with the scaling of Theorem 7, as N → ∞ the
asymptotic (IR) constraint is given by (E.14) and the optimal partition contains two priority
classes with N∗1 top priority agents given by the unique solution to the system:

N∗1 = arg max1≤j≤m

{
1
j

∑j
k=1 e

−n∞ (n∞)k−1

(k−1)!

}
ρ̂Poisson1 ·

(∑N∗1
k=1 e

−n∞ (n∞)k−1

(k−1)!

)
+ ρ̂Poisson2 ·

(∑m
k=N∗1 +1 e

−n∞ (n∞)k−1

(k−1)!

)
= cp

w


which does not depend on F (·), where ρ̂Poisson1 , ρ̂Poisson2 denote the expected utilizations of the
primary and secondary class respectively in a partition with N∗1 primary agents who participate
according to Poisson (n∞).

Proof of Lemma 4. (a) Conditioning that {N = n} agents participate whereN ∼ Bin (N, p),
it is known that the expected waiting time W (n) in the classic M/M/n model is strictly de-
creasing in n. Hence, a coupling argument implies that the expected value EN [W (N )] is
strictly decreasing in agents’ participation probability p.

(b) Fix an arbitrary k ∈ {1, . . . , N} exogenously specified by the firm. Using order statistics
notation, the expected total ability of the top k participating agents is given by

k∑
i=1

∫ 1

amin((ρ̂j)kj=1)
a dFN−i:N−1 (a)

which is maximized at the partition that minimizes amin. That is, the optimal partition is the
one that maximizes agents’ participation probability and contains two priority classes as we
show in Theorem 8.

Proof of Theorem 10. Theorem 7 shows that limN→∞ a
N
min = 1. Let

Pj (a) :=
(
N − 1
j − 1

)
F (a)N−j (1− F (a))j−1

and note that for all j ∈ {1, . . . ,m} we have 0 ≤ Pj (a) ≤ Pj
(
aNmin

)
→ ∞. That is,

limN→∞ u
(
aNmin

)
= limN→∞

∑m
j=1 ρ̂j · Pj

(
aNmin

)
= 0 and the convergence is uniform. Since

u
(
aNmin

)
→ 0 < cp, the unique threshold participation strategy of the agents has as a con-

sequence that in the limit no agent participates as his expected utility does not cover his
participation cost. The welfare optimization problem composed of firm’s profit, the expected
surplus of each agent net the expected waiting time of the customers is written as:

max
k, (ρ̂j)kj=1

W = Π
(
(ρ̂j)kj=1

)
︸ ︷︷ ︸
firm’s profit

+
∫ 1

amin((ρ̂j)kj=1)
u (a) dF (a)︸ ︷︷ ︸

participating agent expected surplus

− EN
[
W (N ) ; (ρ̂j)kj=1

]
︸ ︷︷ ︸

customers’ expected waiting time
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Note that the surplus of each individual agent with ability a is his expected utility u (a). Since
the ability of each agent is private information to him,

∫ 1
amin

u (a) dF (a) reflects the expected
surplus of a participating agent. The statement follows by combining Lemma 4 and Theorem 8
with the fact that total (participating) agent surplus goes to zero as N →∞.
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AppendixF
Proofs of Chapter 3

The following is a known result related to the exponential distribution that we use extensively
in Chapter 3. We include its proof for concreteness.

Lemma 13. Let X1, . . . , XN be independent random variables with Xi following an Exponential (µi)
distribution. Then P [Xi = min1≤j≤N {Xj}] = µi∑N

j=1 µj
.

Proof of Lemma 13. Conditioning we have

P

[
Xi = min

1≤j≤N
{Xj}

]
=
∫ ∞

0
P [Xi < Xj for j 6= i| Xi = t] µie−µitdt

=
∫ ∞

0
P [t < Xj for j 6= i] µie−µitdt

=
∫ ∞

0

∏
j 6=i
P [Xj > t] µie−µitdt

=
∫ ∞

0

∏
j 6=i

e−µjt µie
−µitdt

= µi

∫ ∞
0

e−(µ1+...+µN )tdt

= µi
µ1 + . . .+ µN

which completes the statement.
Proof of Lemma 5. The result follows by applying Wald’s theorem to simplify (3.1). We

show below that the assumptions of Wald’s theorem are satisfied. Observe that the number
of posted questions and the number of times the users and servers enter the forum have finite
expectations since they belong to the finite interval [0, T ]. Also, by assumption for each user
i = 1, . . . , N (resp. for the servers) the arrival times Ti (µipi), Ti (µi (1− pi)) (resp. Tf (s)) into
the forum are IID Exponential with rates µipi, µi (1− pi) (resp. s). Next, we have that the
random variables Aq· (µi, pi) are IID (they are independent by assumption, whereas they follow
the same distribution due to the memoryless property of the exponential distribution applied
to the arrival times of questions). Similarly, it follows that the random variables Qe and Qh are

Konstantinos I. Stouras, Incentive Design of On-Demand Marketplaces
Ph.D. Thesis, INSEAD ©2017

mailto:konstantinos.stouras@insead.edu
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IID. Hence, we have that

Ui (µi, pi) = E

 ∑
qe∈Qe

{
ve1Aqe (µi,pi)

}
−

∑
t∈Ti(µi·pi)

ce +
∑

qh∈Qh

{
vh1Aqh (µi,pi)

}
−

∑
t∈Ti(µi·(1−pi))

ch


= λe T · (veP [Aqe (µi, pi)]) + λh T · (vhP [Aqh (µi, pi)])

− ce · (µi · piT + 1)− ch · (µi · (1− pi)T + 1) ,

where we have used that E [Qe (µi, pi)] = λe T (since this is average number of easy questions
arriving in [0, T ]) and E [Ti (µi)] = µi · piT + 1 (since each user enters into the forum one more
time after T in case there are any unanswered questions and by assumption no more questions
arrive after T ).

Further, a user is rewarded for answering a given question if and only if he arrives before the
servers and before the question expires. The users post answers to a given type of question at
the rate they visit the forum multiplied by the probability they choose to answer that type of
question. By Lemma 13 we have that P [Aqe (µi, pi)] = pi·µi

pi·µi+s+θ . Hence, ignoring exogenous
parameters user i solves

max
(µi,pi)∈[0,+∞)×[0,1]

λe ve
p · µ

p · µ+ s+ θ
− ce p · µ+ λh vh

(1− p) · µ
(1− p) · µ+ s+ θ

− ch (1− p) · µ

as stated.

Proof of Theorem 11. (i) Searching for a symmetric pure equilibrium consider the expected
per question utility of a user

U (µ, p) = λe ve
p · µ

p · µ+ s+ θ
− ce p · µ+ λh vh

(1− p) · µ
(1− p) · µ+ s+ θ

− ch (1− p) · µ

Define µe := p·µ (resp. µh := (1− p)·µ) be the rate of responding to easy (resp. hard questions)
and we require that µe, µh ≥ 0. Then, users’ expected per question utility becomes

U (µe, µh) = λe ve
µe

µe + s+ θ
+ λh vh

µh
µh + s+ θ

− ce µe − ch µh

Observe that the Hessian of U :

H (µe, µh) =

 −2λe ve(s+θ)
(s+θ+µe)3 0

0 −2λh vh(s+θ)
(s+θ+µh)3


is negative definite since all its eigenvalues are negative: −2λe ve(s+θ)

(s+θ+µe)3 < 0 and −2λh vh(s+θ)
(s+θ+µh)3 < 0

for every µe, µh ≥ 0 (Sylvester’s criterion). Hence, U is strictly concave.

The FOCs of U (µe, µh) wrt µe and µh imply

λe ve (s+ θ)
(s+ θ + µe)2 − ce = 0

λh vh (s+ θ)
(s+ θ + µh)2 − ch = 0
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Each equation gives two solutions of the form

µ1, · = −
1
c·

√
c· λ· v· (s+ θ)− (s+ θ) < 0

µ2, · =
1
c·

√
c· λ· v· (s+ θ)− (s+ θ) ≥ 0 (F.1)

The negative ones result in negative expected utility for the users (U < 0), that is the users do
not participate in that case, i.e. they choose a rate µ∗ = 0 (since U (µ = 0) = 0). Hence, we
only keep the non-negative solutions:

µ∗e =
( 1
ce

√
ce λe ve (s+ θ)− (s+ θ)

)+
, µ∗h =

( 1
ch

√
ch λh vh (s+ θ)− (s+ θ)

)+
,

where we used the notation x+ := max {x, 0}.
These imply the equilibrium (global) participation rate into the forum is

µ∗ = µ∗e + µ∗h

and conditional on participation (i.e. if µ∗ > 0) the equilibrium probability is

p∗ = µ∗e
µ∗e + µ∗h

(if µ∗ = 0 the users do not participate and the equilibrium probability is undefined). Note that
the equilibrium is unique and p∗ ∈ [0, 1], µ∗ ≥ 0.
(ii) Each user arrives independently into the forum with rate µ∗ and responds to easy questions

with probability p∗. That is, we may think of users’ responding to easy questions as performing
N independent Bernoulli trials each having a “success” probability µ∗e = µ∗ · p∗. For the hard
questions the proof is similar.
Proof of Theorem 12. (i) From Theorem 11 we have that the users’ rate to easy (resp. hard)

questions is µ∗e =
(

1
ce

√
ce λe ve (s+ θ)− (s+ θ)

)+
(µ∗h =

(
1
ch

√
ch λh vh (s+ θ)− (s+ θ)

)+

respectively). The latter expressions become zero at s0, e :=
(
λe ve
ce
− θ

)+
(resp. s0, h :=(

λh vh
ch
− θ

)+
). Observe that our assumption λe ve

ce
< λh vh

ch
implies that s0, e ≤ s0, h (with equal-

ity iff both are zero). If s0, h > 0 then µ∗ (s) = µ∗e (s) + µ∗h (s) > 0 for each s ∈ [0, s0, h) and
µ∗ (s) = 0 for s ≥ s0, h. If s0, h = 0 then µ∗ (s) = 0 and no user participates for all s ≥ 0.

(ii) Observe that µ∗e (s) and µ∗h (s) are strictly concave wrt s with d2µ∗e
ds2 (s) = − cev2

e

4(ceve(s+θ))3/2 <

0 (similarly for d2µ∗h
ds2 (s)). Hence, µ∗e (s) and µ∗h (s) have a unique maximum. The FOCs give

the unique maxima λe ve
4ce and λh vh

4ch of µ∗e (s) and µ∗h (s) attained at s∗e :=
(
λe ve
4ce − θ

)+
and

s∗h :=
(
λh vh
4ch − θ

)+
respectively. From (i) if s ≥ min {s0, e, s0, h} = s0, e > 0 and s0, e < s0, h, we

have that µ∗e (s) = 0 for s ≥ s0, e. Hence, the users always exploit and respond only to hard
questions with rate µ∗h (s) > 0 when s ∈ [s0, e, s0, h].

Similarly, users’ global service rate

µ∗ (s) = µ∗e (s) + µ∗h (s)
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= 1
ce

√
ce λe ve (s+ θ) + 1

ch

√
ch λh vh (s+ θ)− 2 (s+ θ)

is concave and hence it has a unique maximum. The FOC wrt s gives two solutions s∗1 =
(√λe ve ch−√λh vh ce)2

16cech − θ and s∗ = (√λe ve ch+
√
λh vh ce)2

16cech − θ.

Observe that

µ∗ (s∗1; θ) = λh vh ce + 2
√
ce ch λe λh ve vh − 3ch λe ve

8cech
< µ∗ (s∗; θ) =

(√
λe ve ch +

√
λh vh ce

)2
8cech

Hence, µ∗ (s) attains a unique maximum (√λe ve ch+
√
λh vh ce)2

8cech at s∗ = (√λe ve ch+
√
λh vh ce)2

16cech − θ.

(iii) Observe that all else being equal, the firm’s optimal rate obtained in Theorem 12(ii)

s∗ = (√λe ve ch+
√
λh vh ce)2

16cech − θ is decreasing in ce, ch, and θ. We now show that this result
continues to hold if we assume that the askers are heterogeneous in terms of their abandonment
rate for each type of questions, i.e. θe 6= θh. If this is the case, we can not explicitly solve for
s∗ but instead we have that

dµ∗

ds
(s) = veλe

2
√
ceveλe (s+ θe)

+ vhλh

2
√
chvhλh (s+ θh)

− 2

Note that dµ∗

ds (s) is strictly decreasing in ce and in θe. That is, µ∗ (s) is strictly submodular
in (s, ce) and in (s, θe) respectively, which immediately implies that the optimal s∗ is strictly
decreasing in ce and in θe respectively. Similar arguments hold for ch and in θh.

Proof of Proposition 3. (i) Assume that the askers abandon service with rate θe (resp. θh)
when posting easy (resp. hard) questions, and that these rates are different. Let m (θe, θh) =
min

{(
λe ve
ce
− θe

)+
,
(
λh vh
ch
− θh

)+
}
andM (θe, θh) = max

{(
λe ve
ce
− θe

)+
,
(
λh vh
ch
− θh

)+
}
. Ar-

guing similarly to Theorem 12(i) we have that for s ∈ [0, M (θe, θh)) we have that µ∗ (s) > 0
and the users participate. Extending the definition of users’ probability to resolve easy questions
(Theorem 11) we have that p∗ (s; θe, θh) = µ∗e(s; θe)

µ∗e(s; θe)+µ∗h(s; θh) . Theorem 12 implies that one of

the following holds: (Case 1) if m (θe, θh) =
(
λe ve
ce
− θe

)+
, then µ∗e (s) = 0 for s ≥

(
λe ve
ce
− θe

)+

and µ∗h (s) = 0 for s ≥
(
λh vh
ch
− θh

)+
, or (Case 2) if m (θe, θh) =

(
λh vh
ch
− θh

)+
, then µ∗h (s) = 0

for s ≥
(
λh vh
ch
− θh

)+
and µ∗e (s) = 0 for s ≥

(
λe ve
ce
− θe

)+
.

For both cases, the users respond to both types of problems, (i.e. µ∗e (s), µ∗h (s) > 0 and
p∗ (s; θe, θh) ∈ (0, 1)) if s ∈ [0, m (θe, θh)) (exploration). Under Case 1, the users only respond
to hard questions (i.e. p∗ (s; θe, θh) = 0) since µ∗e (s) = 0 and µ∗h (s) > 0 as long as s ∈
[m (θe, θh) , M (θe, θh)) (exploitation of hard questions). Under Case 2, the users only respond
to easy questions (i.e. p∗ (s; θe, θh) = 1) since µ∗h (s) = 0 and µ∗e (s) > 0 as long as s ∈
[m (θe, θh) , M (θe, θh)) (exploitation of easy questions).

(ii) From Proposition 3(i) we know that the users always exploit and respond only to either
easy or hard questions with a positive rate w.p. 1 when s ∈ [m (θe, θh) , M (θe, θh)), and do not
participate for s ≥M (θe, θh). Assume now that the servers set a rate s ∈ [0, m (θe, θh)).
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Then,

p∗ (ce, ch) =
ch
(√

ce λe ve (s+ θe)− ce (s+ θe)
)

ch
√
ce λe ve (s+ θe) + ce

(
−ch (2s+ θe + θh) +

√
ch λh vh (s+ θh)

) ∈ (0, 1)

with partial derivatives

∂p∗

∂ce
(ce, ch) =

ch
√
ce λe ve (s+ θe)

(
−
√
ch λh vh (s+ θh) + ch (s+ θh)

)
2
(
ch
√
ce λe ve (s+ θe) + ce

(
−ch (2s+ θe + θh) +

√
ch λh vh (s+ θh)

))2

= −µ∗h ·
ch
√
ce λe ve (s+ θe)

2
(
ch
√
ce λe ve (s+ θe) + ce

(
−ch (2s+ θe + θh) +

√
ch λh vh (s+ θh)

))2 < 0

and

∂p∗

∂ch
(ce, ch) =

ce
√
ch λh vh (s+ θh)

(√
ce λe ve (s+ θe)− ce (s+ θe)

)
2
(
ch
√
ce λe ve (s+ θe) + ce

(
−ch (2s+ θe + θh) +

√
ch λh vh (s+ θh)

))2

= µ∗e ·
ch
√
ce λe ve (s+ θe)

2
(
ch
√
ce λe ve (s+ θe) + ce

(
−ch (2s+ θe + θh) +

√
ch λh vh (s+ θh)

))2 > 0

Observe that the sign of the above derivatives holds for all feasible values of the impatience
thresholds θe and θh. All else equal, the equilibrium probability of choosing an easy question p∗ is
strictly decreasing in ce and strictly increasing in ch when s ∈ [0, m (θe, θh)) with p∗ (s) ∈ (0, 1).

(iii) Assume that ce = ch = c and θe = θh = θ. Then, m (θe, θh) = s0, e =
(
λe ve
ce
− θe

)+
. For

s ∈ [0, s0, e) we have that

p∗ (s) = µ∗e
µ∗e + µ∗h

=
ch
(√

ce λe ve (s+ θ)− ce (s+ θ)
)

√
c λe ve (s+ θ) +

√
c λh vh (s+ θ)− 2c (s+ θ)

with a strictly negative derivative

dp∗

ds
(s) =

c
(√

c λe ve (s+ θ)−
√
c λh vh (s+ θ)

)
2
(
−2c (s+ θ) +

√
c λe ve (s+ θ) +

√
c λh vh (s+ θ)

)2 < 0

Hence, p∗ (s) for s ∈ [s0, e, s0, h] is strictly decreasing wrt s.

Proof of Proposition 4. From Theorem 11(ii) we have that the equilibrium number of user
responses to easy (resp. hard) questions Ne (resp. Nh) follows Bin (N, µ∗e) (resp. Bin (N, µ∗h)).
It suffices to show that µ∗e (s) < µ∗h (s) for each s, which would imply that Ne < Nh almost
surely (by a standard coupling argument). Since, s0, e = λe ve

ce
− θ < λh vh

ch
− θ = s0, h we have

that for s ≥ s0, e µ
∗
h (s) > 0 and µ∗e (s) = 0.

Consider now the case s ∈ [0, s0, e) where both rates are strictly positive, i.e. µ∗h (s) > 0 and
µ∗e (s) > 0 for s ∈ [0, s0, e). Then, µ∗h (s) − µ∗e (s) =

√
λh vh (s+θ)

ch
−
√

λe ve (s+θ)
ce

> 0. Hence, we
have that µ∗e (s) < µ∗h (s) for all s ≥ 0.

Proof of Lemma 6. Let µ∗ and p∗ be the users’ participation rate and probability of responding
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to easy questions in equilibrium. We note that the random variables V Ce (s) and V Ch (s) are
IID, E [V Cqe (s)] = N(p∗ µ∗)+s

(N(p∗ µ∗)+s)+θ and E [V Cqh (s)] = N ·(1−p∗)µ∗+s
(N ·(1−p∗)µ∗+s)+θ (since both the N users

and the servers respond to questions, and only answers arrived before the random patience time
of the asker generate service value to the firm), and E [Tf (s)] = sT + 1 (since the servers enter
into the forum one more time after T similarly to the users, while they do not enter thereafter
as no more new content is generated). Arguing similarly to Lemma 5 Wald’s theorem implies

Π (s) = E

 ∑
qe∈Qe

Ve1V Cqe (s) +
∑

qh∈Qh

Vh1V Cqh (s) −
∑

t∈Tf (s)
cf


= λe T · (VeP [V Cqe (s)]) + λh T · (VhP [V Cqh (s)])

− (sT + 1) ,

Ignoring exogenous parameters, the servers solve

max
s≥0

λe Ve
N · (p∗ µ∗) + s

(N · (p∗ µ∗) + s) + θ
+ λh Vh

N · (1− p∗) µ∗ + s

(N · (1− p∗) µ∗ + s) + θ
− cf s

as stated.

Proof of Theorem 13. Let I1 := [0, s0,e], I2 := [s0,e, s0,h] and I3 := [s0,h, +∞). From
Theorem 12 and Theorem 11 we consider the following three cases. First, for a firm’s rate
s ∈ I1 the users respond to both easy and hard questions, hence in that region

µ∗e = p∗ · µ∗ = 1
ce

√
ce λe ve (s+ θ)− (s+ θ)

µ∗h = (1− p∗) · µ∗ = 1
ch

√
ch λh vh (s+ θ)− (s+ θ)

and the firm’s revenue becomes

R (s) =
λe VeN ·

(
1
ce

√
ce λe ve (s+ θ)− (s+ θ)

)
+ s(

N ·
(

1
ce

√
ce λe ve (s+ θ)− (s+ θ)

)
+ s
)

+ θ
+

λh VhN ·
(

1
ch

√
ch λh vh (s+ θ)− (s+ θ)

)
+ s(

N ·
(

1
ch

√
ch λh vh (s+ θ)− (s+ θ)

)
+ s
)

+ θ

Second, when s ∈ I2 the users only respond to hard questions (i.e. p∗ = 0), and the firm
responds to both easy and hard questions. Hence, when s ∈ I2 the firm’s revenue becomes

R (s) = λe Ve
s

s+ θ
+ λh Vh

N ·
(

1
ch

√
ch λh vh (s+ θ)− (s+ θ)

)
+ s(

N ·
(

1
ch

√
ch λh vh (s+ θ)− (s+ θ)

)
+ s

)
+ θ

Third, when s ∈ I3 no user participates into the forum, and only the firm responds to both
easy and hard questions. That is, when s ∈ I3 the firm’s revenue becomes

R (s) = λe Ve
s

s+ θ
+ λh Vh

s

s+ θ

We next show that the firm’s utility is strictly concave in s in each of the intervals I1, I2 and
I3:

Π (s) = λe Ve
N · µ∗e (s) + s

(N µ∗e (s) + s) + θ
+ λh Vh

N · µ∗h (s) + s(
N · µ∗h (s) + s

)
+ θ
− cf s
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Assume first that at least one of µ∗e (s) , µ∗h (s) is strictly positive. Then

d2Π
ds2 (s) = λe Ve

−2θ
(
1 +N dµ∗e

ds (s)
)2

+Nθ (N µ∗e (s) + s+ θ) d2µ∗e
ds2 (s)

(N µ∗e (s) + s+ θ)3

+ λh Vh
−2θ

(
1 +N

dµ∗h
ds (s)

)2
+Nθ (N µ∗h (s) + s+ θ) d2µ∗h

ds2 (s)(
N µ∗h (s) + s+ θ

)3 < 0,

Indeed, the denominator of the first fraction is strictly positive since µ∗e (s) ≥ 0, s ≥ 0 and
θ > 0. Further, we have that

d2µ∗e
ds2 (s) = −ce v2

e λ
2
e

4 (ce ve (s+ θ) λe)
3
2
< 0

Similar arguments hold for the second fraction in firm’s utility. If both µ∗e (s) , µ∗h (s) are zero
then

Π (s) = λe Ve
s

s+ θ
+ λh Vh

s

s+ θ
− cf s

which is strictly concave as well with d2Π
ds2 (s) = −2

(
λe Ve

θ
(s+θ)3 + λh Vh

θ
(s+θ)3

)
< 0.

Since the firm’s utility is strictly concave in the intervals I1, I2 and I3, it has a unique local
maximum in each of them. Then, the unique global maximum of firm’s utility is the maximum
of these three maxima.

Proof of Theorem 14. Suppose that users’ population N is sufficiently large. We solve
firm’s problem given in Theorem 13 for a rate s belonging in each of the following three areas:
I1 =

[
0,
(
λe ve
ce
− θ

)+
]
, I2 =

[(
λe ve
ce
− θ

)+
,
(
λh vh
ch
− θ

)+
]
and I3 =

[(
λh vh
ch
− θ

)+
, +∞

)
. De-

pending on the values of θ, λe vece
and λh vh

ch
the first two intervals may empty. Thus, our proof

has three parts, and for each part we find the local maxima of firm’s utility in each of the
non-empty intervals and compare them to find the global maximum, which is unique as argued
in Theorem 13.

Part (A): Assume that λe ve
ce
− θ > 0. Since by assumption λe ve

ce
< λh vh

ch
, all intervals are

non-empty.

Case 1 : s ∈ I1 =
[
0, λe vece

− θ
]
. In this region, firm’s utility is given by

Π (s) = λe Ve
N · µ∗e (s) + s

(N µ∗e (s) + s) + θ
+ λh Vh

N · µ∗h (s) + s(
N · µ∗h (s) + s

)
+ θ
− cf s

with derivative

dΠ
ds

(s) =
λe Ve θ ·

(
N · dµ

∗
e

ds (s) + 1
)

(N µ∗e (s) + s+ θ)2 +
λh Vh θ ·

(
N · dµ

∗
h

ds (s) + 1
)

(
N µ∗h (s) + s+ θ

)2 − cf

N→∞−−−−→ −cf
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For s∗1 = 0 we get

Π∗ (0) = λe Ve
N · µ∗e (0)
N µ∗e (0) + θ

+ λh Vh
N · µ∗h (0)

N · µ∗h (0) + θ

=
λe VeN ·

(
1
ce

√
ce λe ve θ − θ

)
N ·

(
1
ce

√
ce λe ve θ − θ

)
+ θ

+
λh VhN ·

(
1
ch

√
ch λh vh θ − θ

)
N ·

(
1
ch

√
ch λh vh θ − θ

)
+ θ

N→∞−−−−→ λe Ve + λh Vh

Hence, for sufficiently large N , s∗1 = 0 gives the local maximum Π∗1 = λe Ve + λh Vh, for s ∈
I1 =

[
0, λe vece

− θ
]
.

Case 2 : s ∈ I2 =
[
λe ve
ce
− θ, λh vhch

− θ
]
. In this region, firm’s utility is given by

Π (s) = λe Ve
s

s+ θ
+ λh Vh

N · µ∗h (s) + s(
N · µ∗h (s) + s

)
+ θ
− cf s

with derivative
dΠ
ds

(s) = λe Ve θ

(s+ θ)2 +
λh Vh θ ·

(
N · dµ

∗
h

ds (s) + 1
)

(
N µ∗h (s) + s+ θ

)2 − cf

N→∞−−−−→ λe Ve θ

(s+ θ)2 − cf

Asymptotically, the FOC for N large gives two solutions

s∗ = ±
√
λe Ve θ

cf
− θ

These are valid only if they belong in I2. If
√

λe Ve θ
cf

≤ λe ve
ce

, then we set s∗20 := λe ve
ce
− θ. If√

λe Ve θ
cf
− θ ∈ I2, we set s∗21 :=

√
λe Ve θ
cf
− θ. Finally, if

√
λe Ve θ
cf
≥ λh vh

ch
we set s∗22 := λh vh

ch
− θ.

Observe that the local maximizer s∗20 = λe ve
ce
− θ of I2 can never correspond to the global

maximum of firm’s utility. Indeed, firm’s utility is decreasing in I1 and it is unimodal in I2,
which implies that s∗20 = λe ve

ce
− θ corresponds to a local minimum.

We have
Π∗ (s∗) = λe Ve

s∗

s∗ + θ
+ λh Vh

N · µ∗h (s∗) + s∗(
N · µ∗h (s∗) + s∗

)
+ θ
− cf s∗,

which implies that

lim
N→∞

Π∗ (s∗21) = λe Ve + λh Vh + cf θ − 2
√
cf θ λe Ve

and
lim
N→∞

Π∗ (s∗22) = λe Ve + λh Vh + cf θ − ch
λe Ve θ

λh vh
− cf

λh vh
ch

Hence, for sufficiently largeN , we have the local maxima Π∗21 = λe Ve+λh Vh+cf θ−2
√
cf θ λe Ve

and Π∗22 = λe Ve + λh Vh + cf θ − cf λe Ve θ
λh vh

− λh vh, for s ∈ I2 =
[
λe ve
ce
− θ, λh vhch

− θ
]
.
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Case 3 : s ∈ I3 =
[
λh vh
ch
− θ, +∞

)
. In this region, firm’s utility is given by

Π (s) = λe Ve
s

s+ θ
+ λh Vh

s

s+ θ
− cf s

with derivative
dΠ
ds

(s) = θ (λe Ve + λh Vh)
(s+ θ)2 − cf

The FOC gives

s∗ = ±
√
θ (λe Ve + λh Vh)

cf
− θ,

which is valid as long as it belongs to I3. If
√

θ (λe Ve+λh Vh)
cf

≤ λh vh
ch

, then we set s∗3 := λh vh
ch
− θ.

If
√

θ (λe Ve+λh Vh)
cf

> λh vh
ch

, we set s∗3 :=
√

θ (λe Ve+λh Vh)
cf

− θ. Hence, we have another local

maximum Π∗3 = λe Ve + λh Vh + cf θ − 2
√
cf θ (λe Ve + λh Vh), for s ∈ I3 =

[
λh vh
ch
− θ, +∞

)
.

Since Π∗3 < Π∗21 we have that for sufficiently large N there are three local maxima of firm’s
utility:

Π∗1 := λe Ve + λh Vh

Π∗21 := λe Ve + λh Vh + cf θ − 2
√
cf θ λe Ve

Π∗22 := λe Ve + λh Vh + cf θ − cf
λe Ve θ

λh vh
− λh vh

Observe that demanding s∗21 to belong to I2, i.e. λe vece
− θ ≤ s∗21 ≤

λh vh
ch
− θ or λe ve

ce
≤√

λe Ve θ
cf

≤ λh vh
ch

while simultaneously satisfying the assumptions of Part (A) and keeping
cf θ − 2

√
cf θ λe Ve > 0 is not possible wrt cf . Hence, Π∗21 is dominated by Π∗1. Similarly,

demanding cf θ − cf λe Ve θ
λh vh

− λh vh > 0 and simultaneously satisfying the assumptions of Part
(A) is not possible wrt cf . Hence, Π∗22 is dominated by Π∗1. Therefore, Π∗1 is the unique global
maximum of firm’s utility in Part (A) attained when firm does not interact in the forum at
s∗1 = 0.
Part (B): Assume that λe ve

ce
− θ ≤ 0 and λh vh

ch
− θ > 0. Here, I1 := Ø, and similarly to Part

(A) comparing the local maxima of firm’s utility when s ∈ I2 and when s ∈ I3 we have that
Π∗3 < Π∗21 so the global maximum of firm’s utility is max {Π∗21, Π∗22} which lies in I2.
Part (C): Assume that λh vhch

−θ ≤ 0. Here, I1 := Ø and I2 := Ø so the users do not participate
and only the firm responds to questions. Similarly to Part (A) the global maximum of firm’s util-

ity is Π∗3 = λe Ve+λh Vh+cf θ−2
√
cf θ (λe Ve + λh Vh) attained at s∗3 =

(√
θ (λe Ve+λh Vh)

cf
− θ

)+
.

Overall, we have the following characterization of the global maximum of firm’s problem:

Π∗ =


λe Ve + λh Vh, 0 < θ < λe ve

ce

max
{
λe Ve + λh Vh + cf θ − 2

√
cf θ λe Ve, λe Ve + λh Vh + cf θ − cf λe Ve θ

λh vh
− λh vh

}
, λe ve

ce
≤ θ < λh vh

ch

λe Ve + λh Vh + cf θ − 2
√
cf θ (λe Ve + λh Vh), θ ≥ λh vh

ch

attained at

s∗1 = 0,
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s∗21 =
(√

λe Ve θ

cf
− θ

)+

or s∗22 =
(
λh vh
ch
− θ

)+
,

and

s∗3 =
(√

θ (λe Ve + λh Vh)
cf

− θ
)+

,

respectively.
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